scholarly journals Further Results on Nonlinearly Stretching Permeable Sheets: Analytic Solution for MHD Flow and Mass Transfer

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Rafael Cortell

The steady magnetohydrodynamic (MHD) flow and mass transfer of an incompressible, viscous, and electrically conducting fluid over a permeable flat surface stretched with nonlinear (quadratic) velocity and appropriate wall transpiration is investigated. It is shown that the problem permits an analytical solution for the complete set of equations with magnetic field influences when a fictitious presence of a chemical reaction is considered. Velocity and concentration fields are presented through graphs and discussed. The results for both skin friction coefficient and mass transfer gradient agree well with numerical results published in the literature.

2009 ◽  
Vol 14 (3) ◽  
pp. 345-356 ◽  
Author(s):  
G. Palani ◽  
U. Srikanth

An analysis is performed to study the MHD flow of an electrically conducting, incompressible, viscous fluid past a semi-infinite vertical plate with mass transfer, under the action of transversely applied magnetic field is carried out. The heat due to viscous dissipation and the induced magnetic field are assumed to be negligible. The dimensionless governing equations are unsteady, two-dimensional, coupled and non-linear partial differential equations. A most accurate, unconditionally stable and fast converging implicit finite difference scheme is used to solve the non-dimensional governing equations. The effects of external cooling (Gr > 0) of the plate by the free convection are studied.


2018 ◽  
Vol 23 (3) ◽  
pp. 623-633
Author(s):  
M. Guria

Abstract The unsteady flow of a viscous incompressible electrically conducting fluid due to non-coaxial rotations of a porous disk subjected to a periodic suction and the fluid at infinity in the presence of applied transverse magnetic field has been studied. The fluid at infinity passes through a fixed point. The velocity field, shear stresses are obtained in a closed form.


2004 ◽  
Vol 82 (6) ◽  
pp. 447-458 ◽  
Author(s):  
A A Afify

The effects of radiation and chemical reactions, in the presence of a transverse magnetic field, on free convective flow and mass transfer of an optically dense viscous, incompressible, and electrically conducting fluid past a vertical isothermal cone surface are investigated. The nonlinear boundary-layer equations with the boundary conditions are transferred by a similarity transformation into a system of nonlinear ordinary differential equations with the appropriate boundary conditions. Furthermore, the similarity equations are solved numerically by using a fourth-order Runge–Kutta scheme with the shooting method. Numerical results for the skin-friction coefficient, the local Nusselt number, the local Sherwood number are given; as well, the velocity, temperature, and concentration profiles are presented for a Prandtl number of 0.7, the chemical-reaction parameter, the order of the reaction, the radiation parameter, the Schmidt number, the magnetic parameter, and the surface temperature parameter. PACS No.: 47.70.Fw


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 323-334 ◽  
Author(s):  
Sami M. Ahamed ◽  
Sabyasachi Mondal ◽  
Precious Sibanda

AbstractAn unsteady, laminar, mixed convective stagnation point nanofluid flow through a permeable stretching flat surface using internal heat source or sink and partial slip is investigated. The effects of thermophoresis and Brownian motion parameters are revised on the traditional model of nanofluid for which nanofluid particle volume fraction is passively controlled on the boundary. Spectral relaxation method is applied here to solve the non-dimensional conservation equations. The results show the illustration of the impact of skin friction coefficient, different physical parameters, and the heat transfer rate. The nanofluid motion is enhanced with increase in the value of the internal heat sink or source. On the other hand, the rate of heat transfer on the stretching sheet and the skin friction coefficient are reduced by an increase in internal heat generation. This study further shows that the velocity slip increases with decrease in the rate of heat transfer. The outcome results are benchmarked with previously published results.


2019 ◽  
Vol 24 (1) ◽  
pp. 53-66
Author(s):  
O.J. Fenuga ◽  
S.J. Aroloye ◽  
A.O. Popoola

Abstract This paper investigates a chemically reactive Magnetohydrodynamics fluid flow with heat and mass transfer over a permeable surface taking into consideration the buoyancy force, injection/suction, heat source/sink and thermal radiation. The governing momentum, energy and concentration balance equations are transformed into a set of ordinary differential equations by method of similarity transformation and solved numerically by Runge- Kutta method based on Shooting technique. The influence of various pertinent parameters on the velocity, temperature, concentration fields are discussed graphically. Comparison of this work with previously published works on special cases of the problem was carried out and the results are in excellent agreement. Results also show that the thermo physical parameters in the momentum boundary layer equations increase the skin friction coefficient but decrease the momentum boundary layer. Fluid suction/injection and Prandtl number increase the rate of heat transfer. The order of chemical reaction is quite significant and there is a faster rate of mass transfer when the reaction rate and Schmidt number are increased.


2009 ◽  
Vol 13 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Pushkar Sharma ◽  
Gurminder Singh

Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.


2019 ◽  
Vol 8 (4) ◽  
pp. 1966-1970

A parametric study to investigate the effect of chemical reaction parameter on an MHD mixed convective mass transfer flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate. The equations of motion are work out by assuming Laplace Transform approach. The velocity profile, temperature, concentration, viscous drag, Nusselt number and the rate of mass transfer are discussed graphically by assuming some arbitrary criterion given in the present paper and physical descriptions are made. It is emphasized from the graphical portion that chemical species retards the fluid flow


Sign in / Sign up

Export Citation Format

Share Document