scholarly journals Analyzing Effects of Naturally Occurring Missense Mutations

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Zhe Zhang ◽  
Maria A. Miteva ◽  
Lin Wang ◽  
Emil Alexov

Single-point mutation in genome, for example, single-nucleotide polymorphism (SNP) or rare genetic mutation, is the change of a single nucleotide for another in the genome sequence. Some of them will produce an amino acid substitution in the corresponding protein sequence (missense mutations); others will not. This paper focuses on genetic mutations resulting in a change in the amino acid sequence of the corresponding protein and how to assess their effects on protein wild-type characteristics. The existing methods and approaches for predicting the effects of mutation on protein stability, structure, and dynamics are outlined and discussed with respect to their underlying principles. Available resources, either as stand-alone applications or webservers, are pointed out as well. It is emphasized that understanding the molecular mechanisms behind these effects due to these missense mutations is of critical importance for detecting disease-causing mutations. The paper provides several examples of the application of 3D structure-based methods to model the effects of protein stability and protein-protein interactions caused by missense mutations as well.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 289
Author(s):  
Kathleen K. M. Glover ◽  
Danica M. Sutherland ◽  
Terence S. Dermody ◽  
Kevin M. Coombs

Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.


1997 ◽  
Vol 41 (12) ◽  
pp. 2629-2633 ◽  
Author(s):  
M A Lety ◽  
S Nair ◽  
P Berche ◽  
V Escuyer

Ethambutol [EMB; dextro-2,2'-(ethylenediimino)-di-1-butanol] is an effective drug when used in combination with isoniazid for the treatment of tuberculosis. It inhibits the polymerization of arabinan in the arabinogalactan and lipoarabinomannan of the mycobacterial cell wall. Recent studies have shown that arabinosyltransferases could be targets of EMB. These enzymes are encoded by the emb locus that was identified in Mycobacterium smegmatis, Mycobacterium leprae, Mycobacterium avium, and Mycobacterium tuberculosis. We demonstrate that a missense mutation in the M. smegmatis embB gene, one of the genes of the emb locus, confers resistance to EMB. The level of resistance is not dependent on the number of copies of the mutated embB gene, indicating that this is a true mechanism of resistance. The mutation is located in a region of the EmbB protein that is highly conserved among the different mycobacterial species. We also identified in this region two other independent mutations that confer EMB resistance. Furthermore, mutations have recently been described in the same region of the EmbB protein from clinical EMB-resistant M. tuberculosis isolates. Together, these data strongly suggest that one of the mechanisms of resistance to EMB consists of missense mutations in a particular region of the EmbB protein that could be directly involved in the interaction with the EMB molecule.


2020 ◽  
Vol 21 (12) ◽  
pp. 4211 ◽  
Author(s):  
Valeria De Pasquale ◽  
Marianna Caterino ◽  
Michele Costanzo ◽  
Roberta Fedele ◽  
Margherita Ruoppolo ◽  
...  

Mucopolysaccharidoses (MPSs) are inherited disorders of the glycosaminoglycan (GAG) metabolism. The defective digestion of GAGs within the intralysosomal compartment of affected patients leads to a broad spectrum of clinical manifestations ranging from cardiovascular disease to neurological impairment. The molecular mechanisms underlying the progression of the disease downstream of the genetic mutation of genes encoding for lysosomal enzymes still remain unclear. Here, we applied a targeted metabolomic approach to a mouse model of PS IIIB, using a platform dedicated to the diagnosis of inherited metabolic disorders, in order to identify amino acid and fatty acid metabolic pathway alterations or the manifestations of other metabolic phenotypes. Our analysis highlighted an increase in the levels of branched-chain amino acids (BCAAs: Val, Ile, and Leu), aromatic amino acids (Tyr and Phe), free carnitine, and acylcarnitines in the liver and heart tissues of MPS IIIB mice as compared to the wild type (WT). Moreover, Ala, Met, Glu, Gly, Arg, Orn, and Cit amino acids were also found upregulated in the liver of MPS IIIB mice. These findings show a specific impairment of the BCAA and fatty acid catabolism in the heart of MPS IIIB mice. In the liver of affected mice, the glucose-alanine cycle and urea cycle resulted in being altered alongside a deregulation of the BCAA metabolism. Thus, our data demonstrate that an accumulation of BCAAs occurs secondary to lysosomal GAG storage, in both the liver and the heart of MPS IIIB mice. Since BCAAs regulate the biogenesis of lysosomes and autophagy mechanisms through mTOR signaling, impacting on lipid metabolism, this condition might contribute to the progression of the MPS IIIB disease.


1966 ◽  
Vol 166 (1003) ◽  
pp. 124-137 ◽  

Bence-Jones proteins are the light chains of the autologous myeloma globulin and are analogous to the light chains of normal human immunoglobulins. Peptide mapping has demonstrated that Bence-Jones proteins share a fixed portion of their sequence (the ‘constant’ portion) and also have a mutable part (the ‘variable’ portion). Sequence analysis and ordering of the tryptic and chymotryptic peptides has provided the tentative complete amino acid sequence of one Bence-Jones protein of antigenic type K. Comparison with partial sequence data for other type K Bence-Jones proteins has revealed many structural differences in the amino terminal half of the molecules, but only one structural difference in the carboxyl terminal half. The latter is strongly correlated with the Inv genetic factor. The points of interchange in the amino terminal half occur in clusters close to the half cystine residues and the ‘switch peptide’ (positions 102 through 105), after which the sequence becomes essentially invariant. This suggests that the major areas subject to sequence variation are part of a single topographical region which may define a portion of the antigen combining site in the light chains of antibodies. Many, but not all, the amino acid interchanges are compatible with a single point mutation. As yet, no single mutational theory suffices to explain the manifold differences in structure of the light chains. Such structural variation, however, could result from the presence of many related genes.


2015 ◽  
Vol 112 (8) ◽  
pp. 2551-2556 ◽  
Author(s):  
Michael A. Bemben ◽  
Quynh-Anh Nguyen ◽  
Tongguang Wang ◽  
Yan Li ◽  
Roger A. Nicoll ◽  
...  

Autism spectrum disorders (ASDs) comprise a highly heritable, multifarious group of neurodevelopmental disorders, which are characterized by repetitive behaviors and impairments in social interactions. Point mutations have been identified in X-linked Neuroligin (NLGN) 3 and 4X genes in patients with ASDs and all of these reside in their extracellular domains except for a single point mutation in the cytoplasmic domain of NLGN4X in which an arginine is mutated to a cysteine (R704C). Here we show that endogenous NLGN4X is robustly phosphorylated by protein kinase C (PKC) at T707, and R704C completely eliminates T707 phosphorylation. Endogenous NLGN4X is intensely phosphorylated on T707 upon PKC stimulation in human neurons. Furthermore, a phospho-mimetic mutation at T707 has a profound effect on NLGN4X-mediated excitatory potentiation. Our results now establish an important interplay between a genetic mutation, a key posttranslational modification, and robust synaptic changes, which can provide insights into the synaptic dysfunction of ASDs.


1998 ◽  
Vol 143 (3) ◽  
pp. 673-685 ◽  
Author(s):  
Torsten Wittmann ◽  
Haralabia Boleti ◽  
Claude Antony ◽  
Eric Karsenti ◽  
Isabelle Vernos

Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.


Author(s):  
Pietro Bongini ◽  
Simone Gardini ◽  
Monica Bianchini ◽  
Ottavia Spiga ◽  
Neri Niccolai

Understanding the molecular mechanisms that correlate pathologies with missense mutations is of critical importance for disease risk estimations and for devising personalized therapies. Thus, we have performed a bioinformatic survey of ClinVar, a database of human genomic variations, to find signals that can account for missense mutation pathogenicity. Arginine resulted as the most frequently replaced amino acid both in benign and pathogenic mutations. By adding the structural dimension to this investigation to increase its resolution, we found that arginine mutations occurring at the protein–DNA interface increase pathogenicity 6.5 times with respect to benign variants. Glycine is the second amino acid among all the pathological missense mutations. Necessarily replaced by larger amino acids, glycine substitutions perturb the structural stability of proteins and, therefore, their functions, being mostly located in buried protein moieties. Arginine and glycine appear as representative of missense mutations causing respective changes in interaction processes and protein structural features, the two main molecular mechanisms of genome-induced pathologies.


2021 ◽  
Vol 22 (24) ◽  
pp. 13271
Author(s):  
Christina James ◽  
Christof Lenz ◽  
Henning Urlaub ◽  
Ralph H. Kehlenbach

VAPB (Vesicle-Associated-membrane Protein-associated protein B) is a tail-anchored membrane protein of the endoplasmic reticulum that can also be detected at the inner nuclear membrane. As a component of many contact sites between the endoplasmic reticulum and other organelles, VAPB is engaged in multiple protein interactions with a plethora of binding partners. A mutant version of VAPB, P56S-VAPB, which results from a single point mutation, is involved in a familial form of amyotrophic lateral sclerosis (ALS8). We performed RAPIDS (rapamycin- and APEX-dependent identification of proteins by SILAC) to identify proteins that interact with or are in close proximity to P56S-VAPB. The mutation abrogates the interaction of VAPB with many known binding partners. Here, we identify Sequestosome 1 (SQSTM1), a well-known autophagic adapter protein, as a major interaction/proximity partner of P56S-VAPB. Remarkably, not only the mutant protein, but also wild-type VAPB interacts with SQSTM1, as shown by proximity ligation assays and co-immunoprecipiation experiments.


Metabolomics ◽  
2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Dorna Varshavi ◽  
Dorsa Varshavi ◽  
Nicola McCarthy ◽  
Kirill Veselkov ◽  
Hector C. Keun ◽  
...  

Abstract Introduction KRAS was one of the earliest human oncogenes to be described and is one of the most commonly mutated genes in different human cancers, including colorectal cancer. Despite KRAS mutants being known driver mutations, KRAS has proved difficult to target therapeutically, necessitating a comprehensive understanding of the molecular mechanisms underlying KRAS-driven cellular transformation. Objectives To investigate the metabolic signatures associated with single copy mutant KRAS in isogenic human colorectal cancer cells and to determine what metabolic pathways are affected. Methods Using NMR-based metabonomics, we compared wildtype (WT)-KRAS and mutant KRAS effects on cancer cell metabolism using metabolic profiling of the parental KRASG13D/+ HCT116 cell line and its isogenic, derivative cell lines KRAS+/– and KRASG13D/–. Results Mutation in the KRAS oncogene leads to a general metabolic remodelling to sustain growth and counter stress, including alterations in the metabolism of amino acids and enhanced glutathione biosynthesis. Additionally, we show that KRASG13D/+ and KRASG13D/− cells have a distinct metabolic profile characterized by dysregulation of TCA cycle, up-regulation of glycolysis and glutathione metabolism pathway as well as increased glutamine uptake and acetate utilization. Conclusions Our study showed the effect of a single point mutation in one KRAS allele and KRAS allele loss in an isogenic genetic background, hence avoiding confounding genetic factors. Metabolic differences among different KRAS mutations might play a role in their different responses to anticancer treatments and hence could be exploited as novel metabolic vulnerabilities to develop more effective therapies against oncogenic KRAS. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document