scholarly journals Functional Role of Adult Hippocampal Neurogenesis as a Therapeutic Strategy for Mental Disorders

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Heechul Jun ◽  
Syed Mohammed Qasim Hussaini ◽  
Michael J. Rigby ◽  
Mi-Hyeon Jang

Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.

2008 ◽  
Vol 5 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Irmgard Amrein ◽  
Hans-Peter Lipp

Substantial production of new neurons in the adult mammalian brain is restricted to the olfactory system and the hippocampal formation. Its physiological and behavioural role is still debated. By comparing adult hippocampal neurogenesis (AHN) across many mammalian species, one might recognize a common function. AHN is most prominent in rodents, but shows considerable variability across species, being lowest or missing in primates and bats. The latter finding argues against a critical role of AHN in spatial learning and memory. The common functional denominator across all species investigated thus far is a strong decline of AHN from infancy to midlife. As predicted by Altman and colleagues in 1973, this implies a role in transforming juvenile unpredictable to predictable behaviour, typically characterizing mammalian behaviour once reproductive competence has been attained. However, as only a fraction of mammalian species has been investigated, further comparative studies are necessary in order to recognize whether AHN has a common unique function, or whether it mediates species-specific hippocampal functions.


Physiology ◽  
2004 ◽  
Vol 19 (5) ◽  
pp. 253-261 ◽  
Author(s):  
Alejandro F. Schinder ◽  
Fred H. Gage

The functional relevance of adult hippocampal neurogenesis has long been a matter of intense experimentation and debate, but the precise role of new neurons has not been sufficiently elaborated. Here we propose a hypothesis in which specific features of newly generated neurons contribute to hippocampal plasticity and function and discuss the most recent and relevant findings in the context of the proposed hypothesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicola Forte ◽  
Serena Boccella ◽  
Lea Tunisi ◽  
Alba Clara Fernández-Rilo ◽  
Roberta Imperatore ◽  
...  

AbstractThe mammalian brain stores and distinguishes among episodic memories, i.e. memories formed during the personal experience, through a mechanism of pattern separation computed in the hippocampal dentate gyrus. Decision-making for food-related behaviors, such as the choice and intake of food, might be affected in obese subjects by alterations in the retrieval of episodic memories. Adult neurogenesis in the dentate gyrus regulates the pattern separation. Several molecular factors affect adult neurogenesis and exert a critical role in the development and plasticity of newborn neurons. Orexin-A/hypocretin-1 and downstream endocannabinoid 2-arachidonoylglycerol signaling are altered in obese mice. Here, we show that excessive orexin-A/2-arachidonoylglycerol/cannabinoid receptor type-1 signaling leads to the dysfunction of adult hippocampal neurogenesis and the subsequent inhibition of plasticity and impairment of pattern separation. By inhibiting orexin-A action at orexin-1 receptors we rescued both plasticity and pattern separation impairment in obese mice, thus providing a molecular and functional mechanism to explain alterations in episodic memory in obesity.


2020 ◽  
Vol 18 ◽  
Author(s):  
Marco Carli ◽  
Stefano Aringhieri ◽  
Shivakumar Kolachalam ◽  
Biancamaria Longoni ◽  
Giovanna Grenno ◽  
...  

: Adult neurogenesis consists in the generation of newborn neurons from neural stem cells taking place in the adult brain. In mammals, this process is limited to very few areas of the brain, and one of these neurogenic niches is the subgranular layer of the dentate gyrus (DG) of the hippocampus. Adult newborn neurons are generated from quiescent neural progenitors (QNPs), which differentiate through different steps into mature granule cells (GCs), to be finally integrated into the existing hippocampal circuitry. In animal models, adult hippocampal neurogenesis (AHN) is relevant for pattern discrimination, cognitive flexibility, emotional processing and resilience to stressful situations. Imaging techniques allow to visualize newborn neurons within the hippocampus through all their stages of development and differentiation. In humans, the evidence of AHN is more challenging, and, based on recent findings, it persists through the adulthood, even if it declines with age. Whether this process has an important role in human brain function and how it integrates into the existing hippocampal circuitry is still a matter of exciting debate. Importantly, AHN deficiency has been proposed to be relevant in many psychiatric disorders, including mood disorders, anxiety, post-traumatic stress disorder and schizophrenia. This review aims to investigate how AHN is altered in different psychiatric conditions and how pharmacological treatments can rescue this process. In fact, many psychoactive drugs, such as antidepressants, mood stabilizers and atypical antipsychotics (AAPs), can boost AHN with different results. In addition, some non-pharmacological approaches are discussed as well.


2021 ◽  
Vol 22 (14) ◽  
pp. 7339
Author(s):  
Julia Leschik ◽  
Beat Lutz ◽  
Antonietta Gentile

Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.


2021 ◽  
Vol 28 ◽  
Author(s):  
Lucas Alexandre Santos Marzano ◽  
Fabyolla Lúcia Macedo de Castro ◽  
Caroline Amaral Machado ◽  
João Luís Vieira Monteiro de Barros ◽  
Thiago Macedo e Cordeiro ◽  
...  

: Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI’s long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.


2021 ◽  
Vol 13 ◽  
Author(s):  
Domenica Donatella Li Puma ◽  
Roberto Piacentini ◽  
Claudio Grassi

Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.


Sign in / Sign up

Export Citation Format

Share Document