scholarly journals Characterization of Cellulose Microfibrils Obtained from Hemp

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Anna Šutka ◽  
Silvija Kukle ◽  
Janis Gravitis ◽  
Laima Grave

Microfibrillated cellulose was extracted from hemp fibres using steam explosion pretreatment and high-intensity ultrasonic treatment (HIUS). The acquired results after steam explosion treatment and water and alkali treatments are discussed and interpreted by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was used to examine the microstructure of hemp fibres before and after each treatment. A fibre size analyser was used to analyse the dimensions of the untreated and treated cellulose fibrils. SEM observations show that the sizes of the different treated fibrils have a diameter range of several micrometres, but after HIUS treatment fibres are separate from microfibrils, nanofibres, and their agglomerates.

2012 ◽  
Vol 549 ◽  
pp. 344-348
Author(s):  
Hui Juan Xiu ◽  
Qing Han ◽  
Ru Zhang ◽  
Li Hui Liu

Natural fibers possess many good characteristics, such as abundance, low cost, renewable, biodegradability and photo-degradability that made it a hot spot in exploiting current resources. Chemical modification is a new way to make efficient use of forestry and farming waste natural fiber resources. In this work, softwood fibers were modified by cyanoethylation with acrylonitrile. The influence of acrylonitrile dosage, reaction time, reaction temperature and the time immersed in sodium hydroxide solution with KSCN saturated on cyanoethylation were investigated. Fibers chemical structure and surface morphology before and after modification were characterized by FTIR and scanning electron microscope separately.


2021 ◽  
Author(s):  
Denghui Tong ◽  
Peng Zhan ◽  
Weifeng Zhang ◽  
Yongcai Zhou ◽  
Yilei Huang ◽  
...  

Abstract Pretreatment is an indispensable process in lignocellulosic bioethanol production. In this work, a surfactant agent JFC was introduced into the dilute phosphoric acid plus steam explosion pretreatment scheme for fermentable sugar production using poplar as substrate. Four crucial factors (phosphoric acid concentration, surfactant concentration, pressure, and residence time) affecting the pretreatment efficiency were optimized using the single factor tests. The optimal parameters obtained were as follows: 1:2.5 solid/liquid rate, 2 h pre-soaking time, 1.5 %(v/v) JFC-M + 2.0 wt% phosphoric acid, 2.0 MPa pressure, and 120 s residence time, resulting in a maximum cellulose recovery rate of 86.33 % and enzymatic saccharification rate of 84.62 %, which was 38.97 % higher than that of control. The morphological and structural characteristics of samples before and after pretreatment, were characterized by the scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) method. The addition of JFC-M was of a notable influence in overcoming biomass recalcitrance and boosting cellulose digestion, showing great application potentials in biomass conversion process.


2012 ◽  
Vol 472-475 ◽  
pp. 2828-2833
Author(s):  
Yan Qiao Jin ◽  
Yi Zhuan Zhang ◽  
Xian Su Cheng

In this study, wheat-straw lignocelluloses were liquefied in liquefaction solvents. Polyethyleneglycol 400 (PEG 400) and ethylene glycol (EG) were used as main liquefaction solvents. The effect of liquefaction time and liquefaction solvents on the properties of liquefied products was investigated. As the reaction time increased, the hydroxyl value, residue content and viscosity decreased, and the acid value decreased gradually in the previous period of time then increased. The optimum liquefaction conditions were as follows: wheat-straw lignocelluloses with steam-explosion pretreatment, the main liquefaction reagent of PEG 400, auxiliary liquefaction solvents of glycerin, catalyst of sulfuric acid, liquefaction temperature of 150°C, liquefaction time of 4 h. The hydroxyl value of liquefaction product was 206 mgKOH/g, the residue content was 0.19% and the viscosity was 88 mPa•s.


2020 ◽  
Vol 8 (2) ◽  
pp. S1-S19
Author(s):  
Hamid Souzandeh ◽  
Anil N. Netravali

The interfacial shear strength (IFSS) between natural sisal fiber and zein protein resin was explored using the microbond test. Commercially available zein protein was processed into resins and their IFSS with sisal fiber was measured. Effects of sorbitol plasticizer content and microfibrillated cellulose (MFC) reinforcement loading on the IFSS with the resin were studied. Scanning electron microscopy (SEM) was used to characterize the fracture surfaces before and after the microbond test. Energy dispersive X-ray spectroscopy (EDX) was utilized to map the residual resin on the sisal fiber surface after the microbond test. The results showed that sisal fiber/ zein IFSS decreased with sorbitol content. At 20 wt% sorbitol content 53% decrease in IFSS was observed. IFSS increased with MFC loading from 1.32 MPa (control) to 2.40 MPa for resin containing 15 wt% MFC. Physical entanglements between sisal fibers and MFC are believed to be responsible for this enhancement in the IFSS.


2020 ◽  
Vol 9 (4) ◽  
pp. 9412-9421 ◽  
Author(s):  
Raquel S. Reis ◽  
Lucas G.P. Tienne ◽  
Diego de H.S. Souza ◽  
Maria de Fátima V. Marques ◽  
Sergio N. Monteiro

2012 ◽  
Vol 51 (6) ◽  
pp. 2704-2713 ◽  
Author(s):  
Kun Wang ◽  
Jian-Xin Jiang ◽  
Feng Xu ◽  
Run-Cang Sun

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ricardo Danil Guiraldo ◽  
Sandrine Bittencourt Berger ◽  
Rafael Leonardo Xediek Consani ◽  
Simonides Consani ◽  
Rodrigo Varella de Carvalho ◽  
...  

Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes’ Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs(n=5)and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt). The filler fractions in volume (vt) were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.


2015 ◽  
Vol 1087 ◽  
pp. 40-44 ◽  
Author(s):  
Nurul Aimi Mohd Zainul Abidin ◽  
Noriean Azraaie ◽  
Nur Ain Ibrahim ◽  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
...  

Cellulose is one of the most abundant biomass material in nature extracted from natural fibers. Its hierarchical structure allows different kinds of microfibril cellulosic fillers to be obtained known as cellulose microfibril or microfibrillated cellulose (MFC). MFC is generally prepared by either acid hydrolysis, or chemical treatments, or by a high pressure refiner. In this study, attempts have been made to extract MFC from Resak’s hardwood waste (Vatica spp.) at atmospheric pressure using single-stage peroxyacetic acid delignification and Totally Chlorine-Free bleaching methods. The morphology structure of samples were characterized using Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD).


Sign in / Sign up

Export Citation Format

Share Document