scholarly journals Role of Microglia in CNS Autoimmunity

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Tobias Goldmann ◽  
Marco Prinz

Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS) in the Western world. The disease is characterized histologically by the infiltration of encephalitogenicTH1/TH17-polarized CD4+T cells, B cells, and a plethora of myeloid cells, resulting in severe demyelination ultimately leading to a degeneration of neuronal structures. These pathological processes are substantially modulated by microglia, the resident immune competent cells of the CNS. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia during CNS autoimmunity in either promoting tissue injury or tissue repair. Hence, understanding microglia involvement in MS offers new exciting paths for therapeutic intervention.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Yin ◽  
Katherine L. Valin ◽  
Michael L. Dixon ◽  
Jianmei W. Leavenworth

Macrophages are major cell types of the immune system, and they comprise both tissue-resident populations and circulating monocyte-derived subsets. Here, we discuss microglia, the resident macrophage within the central nervous system (CNS), and CNS-infiltrating macrophages. Under steady state, microglia play important roles in the regulation of CNS homeostasis through the removal of damaged or unnecessary neurons and synapses. In the face of inflammatory or pathological insults, microglia and CNS-infiltrating macrophages not only constitute the first line of defense against pathogens by regulating components of innate immunity, but they also regulate the adaptive arms of immune responses. Dysregulation of these responses contributes to many CNS disorders. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia and macrophages during CNS autoimmunity—multiple sclerosis and cancer—malignant glioma. We emphasize how the crosstalk between natural killer (NK) cells or glioma cells or glioma stem cells and CNS macrophages impacts on the pathological processes. Given the essential role of CNS microglia and macrophages in the regulation of all types of CNS disorders, agents targeting these subsets are currently applied in preclinical and clinical trials. We believe that a better understanding of the biology of these macrophage subsets offers new exciting paths for therapeutic intervention.


2015 ◽  
Vol 287 ◽  
pp. 80-87 ◽  
Author(s):  
Beatrice Macchi ◽  
Francesca Marino-Merlo ◽  
Ugo Nocentini ◽  
Valerio Pisani ◽  
Salvatore Cuzzocrea ◽  
...  

2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Caterina P. Profaci ◽  
Roeben N. Munji ◽  
Robert S. Pulido ◽  
Richard Daneman

The blood vessels vascularizing the central nervous system exhibit a series of distinct properties that tightly control the movement of ions, molecules, and cells between the blood and the parenchyma. This “blood–brain barrier” is initiated during angiogenesis via signals from the surrounding neural environment, and its integrity remains vital for homeostasis and neural protection throughout life. Blood–brain barrier dysfunction contributes to pathology in a range of neurological conditions including multiple sclerosis, stroke, and epilepsy, and has also been implicated in neurodegenerative diseases such as Alzheimer’s disease. This review will discuss current knowledge and key unanswered questions regarding the blood–brain barrier in health and disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Bollaerts ◽  
Jessie Van houcke ◽  
Lien Andries ◽  
Lies De Groef ◽  
Lieve Moons

Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Genaro G. Ortiz ◽  
Fermín P. Pacheco-Moisés ◽  
Oscar K. Bitzer-Quintero ◽  
Ana C. Ramírez-Anguiano ◽  
Luis J. Flores-Alvarado ◽  
...  

Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites, the presence of multiple lesions, generally being more pronounced in the brain stem and spinal cord, the predominantly perivascular location of lesions, the temporal maturation of lesions from inflammation through demyelination, to gliosis and partial remyelination, and the presence of immunoglobulin in the central nervous system and cerebrospinal fluid. Lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Pro-inflammatory cytokines amplify the inflammatory cascade by compromising the BBB, recruiting immune cells from the periphery, and activating resident microglia. inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in the demyelination and free radical-mediated tissue injury in the pathogenesis of MS. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- and nitrogen-free radicals as well as proinflammatory cytokines which contribute to the development and progression of the disease. Inflammation can lead to oxidative stress and vice versa. Thus, oxidative stress and inflammation are involved in a self-perpetuating cycle.


US Neurology ◽  
2017 ◽  
Vol 13 (02) ◽  
pp. 90
Author(s):  
Meena R Kannan ◽  
Vijayshree Yadav ◽  
◽  

Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system and the most common non-traumatic cause of disability in young adults. Recent research shows that vascular disease risk factors (VDRFs) such as obesity, smoking, hyperlipidemia, hypertension, type II diabetes mellitus, and metabolic syndrome, can influence MS on its onset, disease activity, progression, and resultant disability. This review evaluates the current knowledge on the role of VDRFs on outcomes among people with MS (PwMS) and shows that while VDRF prevalence may or may not be higher among PwMS compared with the general population, its presence can influence MS in myriad ways. Management of VDRFs through early detection and treatment may be a promising approach to improving outcomes in PwMS.


Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 91 ◽  
Author(s):  
Francesca Gado ◽  
Maria Digiacomo ◽  
Marco Macchia ◽  
Simone Bertini ◽  
Clementina Manera

Recent findings highlight the emerging role of the endocannabinoid system in the control of symptoms and disease progression in multiple sclerosis (MS). MS is a chronic, immune-mediated, demyelinating disorder of the central nervous system with no cure so far. It is widely reported in the literature that cannabinoids might be used to control MS symptoms and that they also might exert neuroprotective effects and slow down disease progression. This review aims to give an overview of the principal cannabinoids (synthetic and endogenous) used for the symptomatic amelioration of MS and their beneficial outcomes, providing new potentially possible perspectives for the treatment of this disease.


Sign in / Sign up

Export Citation Format

Share Document