scholarly journals The Role of Microglia and Macrophages in CNS Homeostasis, Autoimmunity, and Cancer

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Yin ◽  
Katherine L. Valin ◽  
Michael L. Dixon ◽  
Jianmei W. Leavenworth

Macrophages are major cell types of the immune system, and they comprise both tissue-resident populations and circulating monocyte-derived subsets. Here, we discuss microglia, the resident macrophage within the central nervous system (CNS), and CNS-infiltrating macrophages. Under steady state, microglia play important roles in the regulation of CNS homeostasis through the removal of damaged or unnecessary neurons and synapses. In the face of inflammatory or pathological insults, microglia and CNS-infiltrating macrophages not only constitute the first line of defense against pathogens by regulating components of innate immunity, but they also regulate the adaptive arms of immune responses. Dysregulation of these responses contributes to many CNS disorders. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia and macrophages during CNS autoimmunity—multiple sclerosis and cancer—malignant glioma. We emphasize how the crosstalk between natural killer (NK) cells or glioma cells or glioma stem cells and CNS macrophages impacts on the pathological processes. Given the essential role of CNS microglia and macrophages in the regulation of all types of CNS disorders, agents targeting these subsets are currently applied in preclinical and clinical trials. We believe that a better understanding of the biology of these macrophage subsets offers new exciting paths for therapeutic intervention.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Tobias Goldmann ◽  
Marco Prinz

Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS) in the Western world. The disease is characterized histologically by the infiltration of encephalitogenicTH1/TH17-polarized CD4+T cells, B cells, and a plethora of myeloid cells, resulting in severe demyelination ultimately leading to a degeneration of neuronal structures. These pathological processes are substantially modulated by microglia, the resident immune competent cells of the CNS. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia during CNS autoimmunity in either promoting tissue injury or tissue repair. Hence, understanding microglia involvement in MS offers new exciting paths for therapeutic intervention.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2353
Author(s):  
Maja Potokar ◽  
Jernej Jorgačevski

Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.


2021 ◽  
pp. 1-9
Author(s):  
Shufen Zhang ◽  
Deshu Shang ◽  
Han Shi ◽  
Weiyu Teng ◽  
Li Tian

<b><i>Background:</i></b> Astrocytes are the most numerous cell types within the central nervous system, and many efforts have been put into determining the exact role of astrocytes in neuroprotection and repair after ischemic stroke. Although numerous studies have been done in recent years, there is still no thorough understanding of the exact function of astrocytes in the whole course of the stroke. <b><i>Summary:</i></b> According to the recent literature, there are many structures and factors that play important roles in the process of ischemic stroke, among which blood-brain barrier, various growth factors, gap junctions, AQP4, and glial scars have been studied most comprehensively, and all these factors are closely related to astrocytes. The role of astrocytes in ischemic stroke, therefore, can be analyzed more comprehensively. <b><i>Key Message:</i></b> The present review mainly summarized the current knowledge about astrocytes and their potential roles after ischemic stroke.


Immuno ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 78-90
Author(s):  
Johannes Burtscher ◽  
Grégoire P. Millet

Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction, oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mitochondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis is poorly understood. Here, we summarize evidence of the involvement of three interdependent factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neurodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge on the well-established role of inflammation and immunity, the emerging interest in the contribution of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their tight association as an important aspect of the disease merits detailed investigation. Consequences of related injuries are discussed in the context of aging and the interaction of different brain cell types, in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in the substantia nigra. A special focus is put on the identification of current knowledge gaps and we emphasize the importance of related insights from other research fields, such as cancer research and immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidification and inflammation is likely also of relevance for other neurodegenerative diseases, despite disease-specific biochemical and metabolic alterations.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


2018 ◽  
Vol 20 (1) ◽  
pp. 78 ◽  
Author(s):  
Huiju Lee ◽  
Yoon Choi

Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer’s disease, and the role of several other signaling molecules.


2020 ◽  
Vol 27 (1) ◽  
pp. 107327482090338 ◽  
Author(s):  
Sara Pączek ◽  
Marta Łukaszewicz-Zając ◽  
Barbara Mroczko

Colorectal cancer (CRC) is one of the leading causes of cancer-related death. It is the second most frequently diagnosed malignancy in Europe and third worldwide. Colorectal malignancies diagnosed at an early stage offer a promising survival rate. However, advanced tumors often present distant metastases even after the complete resection of a primary tumor. Therefore, novel biomarkers of CRC are sorely needed in the diagnosis and prognosis of this common malignancy. A family of chemokines are composed of small, secreted proteins. They are best known for their ability to stimulate the migration of several cell types. Some investigations have indicated that chemokines are involved in cancer development, including CRC. This article presents current knowledge regarding chemokines and their specific receptors in CRC progression. Moreover, the prime aim of this review is to summarize the potential role of these proteins as biomarkers in the diagnosis and prognosis of CRC.


2019 ◽  
Vol 20 (6) ◽  
pp. 1318 ◽  
Author(s):  
Alexandra Kupke ◽  
Sabrina Becker ◽  
Konstantin Wewetzer ◽  
Barbara Ahlemeyer ◽  
Markus Eickmann ◽  
...  

Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1792 ◽  
Author(s):  
Rada Tazhitdinova ◽  
Alexander V. Timoshenko

Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.


Sign in / Sign up

Export Citation Format

Share Document