scholarly journals Mathematical Modeling and Parameters Estimation of Car Crash Using Eigensystem Realization Algorithm and Curve-Fitting Approaches

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bernard B. Munyazikwiye ◽  
Hamid Reza Karimi ◽  
Kjell Gunnar Robbersmyr

An eigensystem realization algorithm (ERA) approach for estimating the structural system matrices is proposed in this paper using the measurements of acceleration data available from the real crash test. A mathematical model that represents the real vehicle frontal crash scenario is presented. The model’s structure is a double-spring-mass-damper system, whereby the front mass represents the vehicle-chassis and the rear mass represents the passenger compartment. The physical parameters of the model are estimated using curve-fitting approach, and the estimated state system matrices are estimated by using the ERA approach. The model is validated by comparing the results from the model with those from the real crash test.

Author(s):  
Zhi Xiao ◽  
Li Wang ◽  
Fuhao Mo ◽  
Siqi Zhao ◽  
Cuina Liu

With the rapid development of car crash sensing and identification technology, the application of pre-triggering airbag system is becoming an important option to improve vehicle safety. Thus, the present study aims to investigate the injury protection ability of pre-triggering airbag system and optimize its performance in frontal crashes regarding the key physical parameters. A driver restraint system model established and validated by National Crash Analysis Center was employed and validated for studying the injury protection ability of pre-triggering airbag system. Then, the influences of airbag triggering time, airbag volume scaling factor, inflator mass flow, and exhaust orifice size of pre-triggering airbag system on driver’s head and chest injuries were analyzed. Finally, the weighted injury criterion was selected as the evaluation index to optimize the pre-triggering airbag system. The results show the pre-triggering airbag should be designed with a larger airbag volume and inflator mass flow rate and smaller exhaust orifice. The optimized restraint system design presents a reduction of weighted injury criterion values in 100% and 40% overlapped frontal impacts reaching 25.63% and 42.23%, respectively.


1981 ◽  
Vol 21 (06) ◽  
pp. 699-708
Author(s):  
Paul E. Saylor

Abstract Reservoir simulation yields a system of linear algebraic equations, Ap=q, that may be solved by Richardson's iterative method, p(k+1)=p(k)+tkr(k), where r(k)=q-Ap(k) is the residual and t0, . . . tk are acceleration parameters. The incomplete factorization, Ka, of the strongly implicit procedure (SIP) yields an improvement of Richardson's method, p(k+1)=p(k)+tkKa−1r(k). Parameter a originates from SIP. The product of the L and U factors produced by SIP gives Ka=LU. The best values of the tk acceleration parameters may be computed dynamically by an efficient algorithm; the best value of a must be found by trial and error, which is not hard for only one value. The advantages of the method are (1) it always converges, (2) with the exception of the a parameter, parameters are computed dynamically, and (3) convergence is efficient for test problems characterized by heterogeneities and transmissibilities varying over 10 orders of magnitude. The test problems originate from field data and were suggested by industry personnel as particularly difficult. Dynamic computation of parameters is also a feature of the conjugate gradient method, but the iteration described here does not require A to be symmetric. Matrix Ka−1 A must be such that the real part of each eigenvalue is nonnegative, or the real part of each is nonpositive, but not both positive and negative. It is in this sense that the method always converges. This condition is satisfied by many simulator-generated matrices. The method also may be applied to matrices arising from the simulation of other processes, such as chemical flooding. Introduction The solution of a linear algebraic system, Ap=q, is a basic, costly step in the numerical simulation of a hydrocarbon reservoir. Many current solution methods are impractical for large linear systems arising from three-dimensional simulations or from reservoirs characterized by widely varying and discontinuous physical parameters. An iterative solution is described with these two main advantages:it is efficient for difficult problems andthe selection of iteration parameters is straightforward. The method is Richardson's method applied to a preconditioned linear system. Matrix A may be symmetric or nonsymmetric. In the simulation of multiphase flow, it is usually nonsymmetric. Convergence behavior is shown for four examples. Two of these, Examples 3 and 4, were provided by an industry laboratory (Exxon Production Research Co.), and were suggested by personnel as especially difficult to solve; SIP failed to converge and only the diagonal method1 was effective. Convergence of Richardson's method is compared with the diagonal method using data from a laboratory run. The other two examples are: Example 1, a matrix not difficult to solve, generated from field data, and Example 2, a variant of a difficult matrix described by Stone.2 The easy matrix of Example 1 is included to show the performance of Richardson's method (with preconditioning) on a simple problem.


2019 ◽  
Vol 11 (2) ◽  
pp. 92
Author(s):  
Josip Soln

The complex particle energy, appearing in this article, with the suggestive choices of physical parameters,is transformed simply into the real particle energy. Then with the bicubic equation limiting particle velocity formalism, one evaluates the three particle limiting velocities, $c_{1},$ $c_{2}$\ and $% c_{3},$ (primary, obscure and normal) in terms of the ordinary particle velocity, $v$, and derived positive $m_{+}=m\succ 0$ \ and negative \ $% m_{-}=-m\prec 0$ \ \ particle masses with $m_{+}^{2}=m_{-}^{2}=$ $m^{2}$. In general, the important quantity in solving this bicubic equation is the real square value $\ z^{2}(m)$ of the congruent parameter, $z(m)$, that connects real or complex value of particle energy, $E,$ and the real or complex value of particle velocity squared, $v^{2}$, $2Ez(m)=3\sqrt{3}mv^{2}$% . With real $z^{2}(m)$ one determines the real value of discriminant, $D,$ of the bicubic equation, and they together influence the connection between $% E$ and $v^{2}.$ Hence, when $z^{2}\prec 1$ and \ $D\prec 0$ one has simply that $E\gg mv^{2}$. However,with $D\succeq 0$ and $z^{2}\succeq 1$ , both $E$ and $v^{2}$ may become complex simultaneously through connecting relation $% E=3\sqrt{3}mv^{2}/2z(m)$, with their real values satisfying \ Re $E\succcurlyeq m\left( \func{Re}v^{2}\right) $, keeping, however $z^{2}$ the same and real. In this article, this new situation with $D\succeq 0$ is discussed in detail.by looking as how to adjust the particle\ parameters to have $\func{Im% }E=0$ with implication that automatically also Im$v^{2}=0.$.In fact, after having adjusted the particle\ parameters successfully this way, one simply writes Re$E=E$ and Re$v^{2}=v^{2}$. \ \ This way one arrives at that the limiting velocities satisfy $c_{1}=c_{2}$\ $\#$ $c_{3}$, which shows the degeneracy of $c_{1}$ and $c_{2}$ as the same numerical limiting velocity for two particles. This degeneracy $c_{1}$ =$c_{2}$ is simply due to the absence of $\func{Im}E$. It would start disappearing with just an infinitesimal $\func{Im}E$. Now,while $c_{1}=c_{2}$ is real, $c_{3}$ is imaginary and all of them associated with the same particle energy, $E$. With these velocity values the congruent parameter becomes quantized as $% z(m_{\pm })=3\sqrt{3}m_{\pm }v^{2}/2E=\pm 1$ which, with the bicubic discriminant $D=0$ value, implies the quantization also of the particle mass, $m,$ into $m_{\pm }=\pm m$ values . The numerically equal energies,from $E=\func{Re}E$ can be expressed as $\ \ \ \ \ \ \ \ \ \ \ $$E(c_{1,2}($ $m_{\pm }))=E(c_{3}(m_{\pm }))$ either directly in terms of $% c_{1}(m_{\pm })=c_{2}(m_{\pm })$ and $c_{3}(m_{\pm })$ or also indirectly in terms of particle velocity, $v$, as well as in the Lorentzian fixed forms with $v^{2}\#$ $c_{1}^{2},$ $c_{2}^{2}$\ or $c_{3}^{2}$ assuring different from zero mass, $m$ $\#$ $0$. At the end, with here developed formalism, one calculates for a light sterile neutrino dark matter particle, the energies associated with $m_{\pm} $ masses and $c_{1,2}$and $c_{3}$ limiting velocities.


1996 ◽  
Vol 23 ◽  
pp. 382-387 ◽  
Author(s):  
I. Hansen ◽  
R. Greve

An approach to simulate the present Antarctic ice sheet with reaped to its thermomechanical behaviour and the resulting features is made with the three-dimensional polythermal ice-sheet model designed by Greve and Hutter. It treats zones of cold and temperate ice as different materials with their own properties and dynamics. This is important because an underlying layer of temperate ice can influence the ice sheet as a whole, e.g. the cold ice may slide upon the less viscous binary ice water mixture. Measurements indicate that the geothermal heat flux below the Antarctic ice sheet appears to be remarkably higher than the standard value of 42 m W m−2 that is usually applied for Precambrian shields in ice-sheet modelling. Since the extent of temperate ice at the base is highly dependent on this heat input from the lithosphere, an adequate choice is crucial for realistic simulations. We shall present a series of steady-state results with varied geothermal heat flux and demonstrate that the real ice-sheet topography can be reproduced fairly well with a value in the range 50–60 m W m−2. Thus, the physical parameters of ice (especially the enhancement factor in Glen’s flow law) as used by Greve (1995) for polythermal Greenland ice-sheet simulations can be adopted without any change. The remaining disagreements may he explained by the neglected influence of the ice shelves, the rather coarse horizontal resolution (100 km), the steady-state assumption and possible shortcomings in the parameterization of the surface mass balance.


Author(s):  
Francesco Braghin ◽  
Paolo Pennacchi ◽  
Edoardo Sabbioni

The dynamic behavior of the human body during race car maneuvers and frontal crash tests is analyzed in this paper. Both the vehicle and the human body have been modeled using the multi-body approach. Two commercial codes, BRG LifeMOD Biomechanics Modeler®, for the simulation of the human body dynamics, and MSC ADAMS/Car® for the modeling of the vehicle behavior, have been used for the purpose. Due to the impossibility of co-simulating, at first the accelerations on the driver’s chassis are determined using the vehicle’s multibody code and approximating the driver as a rigid body. Then, the calculated accelerations are applied to the vehicle chassis in the biomechanics code to assess the accelerations in various significant points on the driver.


Author(s):  
Eric Jackson ◽  
Lisa Aultman-Hall ◽  
Britt A. Holmén ◽  
Jianhe Du

This paper evaluates the ability of Global Positioning System (GPS) receivers to determine accurately the second-by-second operating mode of a vehicle in the real-world transportation network. GPS offers the ability to obtain second-by-second velocity directly and to obtain acceleration data indirectly from a vehicle traveling in the real-world traffic network. Although GPS has been used successfully in travel behavior and route choice surveys, the uncertainty in accuracy of velocity and acceleration data obtained from the GPS warrants further investigation to gain a better understanding of the range and spatial distribution of vehicle emissions. In this study, data from two GPS receivers and a ScanTool were collected over five repetitions of a 65-mi route. The results indicate that GPS receivers perform as well as the ScanTool when measuring velocity. Furthermore, the GPS receivers determined the 1-s operating mode of the vehicle successfully when measured against the ScanTool. These results will aid in the future development of vehicle emissions models and allow for an analysis of real-world emissions based on real-world operating mode data.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1748-1753
Author(s):  
YONGCHUL KIM ◽  
YOUNGIL YOUM ◽  
HANIL BAE ◽  
HYEONKI CHOI

Safety of the occupant during the crash is very essential design element. Many researches have been investigated in reducing the fatal injury of occupant. They are focusing on the development of a dummy in order to obtain the real human-like motion. However, they have not considered the arm resist motion during the car accident. In this study, we would like to suggest the importance of the reactive force of the arm in a car crash. The influences of reactive force acting on the human upper extremity were investigated using the impedance experimental method with lumped mass model of hand system and a Hybrid III dummy with human-like arm. Impedance parameters (e.g. inertia, spring constant and damping coefficient) of the elbow joint in maximum activation level were measured by free oscillation test using single axis robot. The results showed that without seat belt, the reactive force of human arm reduced the head, chest, and femur injury, and the flexion moment of the neck is higher than that of the conventional dummy.


2007 ◽  
Vol 12 (2) ◽  
pp. 137-151 ◽  
Author(s):  
Robert Thomson ◽  
Mervyn Edwards ◽  
Tiphaine Martin ◽  
Cor van der Zweep ◽  
Richard Damm ◽  
...  
Keyword(s):  

2012 ◽  
Vol 503-504 ◽  
pp. 1045-1049
Author(s):  
Xiu Gang Wang ◽  
Hai Bing Qiu ◽  
Jian Su ◽  
Xiao Ning Cao ◽  
Heng Gang Wang

Rotary torque is one of the important parameters of the bogie. A scheme of the rotary torque test for the bogie was put forward, and the homogeneous matrix based on the Euler angle was introduced, the model of inverse pose of the slewing platform was built. Also, it implemented the real-time solution by means of simulink, and fitted the curve of hydraulic cylinder expansion amount and time by use of the MATLAB curve fitting toolbox. The method that took the motion curves of the actuators as the control input is put forward, which was of great value and laid the foundation for the test of rotary torque.


2018 ◽  
Vol 22 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
Kai-Wen Wang ◽  
Xiao-Hua Yang ◽  
Yu-Qi Li ◽  
Chang-Ming Liu ◽  
Xing-Jian Guo

To improve the precision of parameters? estimation in Philip infiltration model, chaos gray-coded genetic algorithm was introduced. The optimization algorithm made it possible to change from the discrete form of time perturbation function to a more flexible continuous form. The software RETC and Hydrus-1D were applied to estimate the soil physical parameters and referenced cumulative infiltration for seven different soils in the USDA soil texture triangle. The comparisons among Philip infiltration model with different numerical calculation methods showed that using optimization technique can increase the Nash and Sutcliffe efficiency from 0.82 to 0.97, and decrease the percent bias from 14% to 2%. The results indicated that using the discrete relationship of time perturbation function in Philip infiltration model?s numerical calculation underestimated model?s parameters, but this problem can be corrected a lot by using optimization algorithm. We acknowledge that in this study the fitting of time perturbation function, Chebyshev polynomial with order 20, did not perform perfectly near saturated and residue water content. So exploring a more appropriate function for representing time perturbation function is valuable in the future.


Sign in / Sign up

Export Citation Format

Share Document