scholarly journals Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Eva Koellensperger ◽  
Willem Niesen ◽  
Jonas Kolbenschlag ◽  
Felix Gramley ◽  
Guenter Germann ◽  
...  

In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC) is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n= 20). Injection of cell culture medium performed in group 2 (n= 20) served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P< 0.017), total protein (P< 0.031), glutamic oxaloacetic transaminase (P< 0.001), and lactate dehydrogenase (P< 0.04) levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

2016 ◽  
Vol 34 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Dae Seong Kim ◽  
Myoung Woo Lee ◽  
Young Jong Ko ◽  
Yong Hoon Chun ◽  
Hyung Joon Kim ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 204173141983505 ◽  
Author(s):  
Metka Voga ◽  
Natasa Drnovsek ◽  
Sasa Novak ◽  
Gregor Majdic

Under appropriate culture conditions, mesenchymal stem cells (MSC), also called more properly multipotent mesenchymal stromal cells (MMSC), can be induced toward differentiation into different cell lineages. In order to guide stem cell fate within an environment resembling the stem cell niche, different biomaterials are being developed. In the present study, we used silk fibroin (SF) as a biomaterial supporting the growth of MMSC and studied its effect on chondrogenesis of canine adipose–derived MMSC (cADMMSC). Adipose tissue was collected from nine privately owned dogs. MMSC were cultured on SF films and SF scaffolds in a standard cell culture medium. Cell morphology was evaluated by scanning electron microscopy (SEM). Chondrogenic differentiation was evaluated by alcian blue staining and mRNA expression of collagen type 1, collagen type 2, Sox9, and Aggrecan genes. cADMMSC cultured on SF films and SF scaffolds stained positive using alcian blue. SEM images revealed nodule-like structures with matrix vesicles and fibers resembling chondrogenic nodules. Gene expression of chondrogenic markers Sox9 and Aggrecan were statistically significantly upregulated in cADMMSC cultured on SF films in comparison to negative control cADMMSC. This result suggests that chondrogenesis of cADMMSC could occur when cells were grown on SF films in a standard cell culture medium without specific culture conditions, which were previously considered necessary for induction of chondrogenic differentiation.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e83363 ◽  
Author(s):  
Dae Seong Kim ◽  
Myoung Woo Lee ◽  
Keon Hee Yoo ◽  
Tae-Hee Lee ◽  
Hye Jin Kim ◽  
...  

2017 ◽  
Vol 15 ◽  
pp. 207-213
Author(s):  
Martina Rohland ◽  
Kai Baaske ◽  
Katharina Gläser ◽  
Henning Hintzsche ◽  
Helga Stopper ◽  
...  

Abstract. In this paper we describe the design of an exposure setup used to study possible non-thermal effects due to the exposure of human hematopoietic stem cells to GSM, UMTS and LTE mobile communication signals. The experiments are performed under fully blinded conditions in a TEM waveguide located inside an incubator to achieve defined environmental conditions as required for the living cells. Chamber slides containing the cells in culture medium are placed on the septum of the waveguide. The environmental and exposure parameters such as signal power, temperatures, relative humidity and CO2 content of the surrounding atmosphere are monitored permanently during the exposure experiment. The power of the exposure signals required to achieve specific absorption rates of 0.5, 1, 2 and 4 W kg−1 are determined by numerical calculation of the field distribution inside the cell culture medium at 900 MHz (GSM), 1950 MHz (UMTS) and 2535 MHz (LTE). The dosimetry is verified both with scattering parameter measurements on the waveguide with and without containers filled with cell culture medium and with temperature measurements with non-metallic probes in separate heating experiments.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 466
Author(s):  
Stefano Panella ◽  
Francesco Muoio ◽  
Valentin Jossen ◽  
Yves Harder ◽  
Regine Eibl-Schindler ◽  
...  

Adipose tissue is an abundant source of stem cells. However, liposuction cannot yield cell quantities sufficient for direct applications in regenerative medicine. Therefore, the development of GMP-compliant ex vivo expansion protocols is required to ensure the production of a “cell drug” that is safe, reproducible, and cost-effective. Thus, we developed our own basal defined xeno- and serum-free cell culture medium (UrSuppe), specifically formulated to grow human adipose stem cells (hASCs). With this medium, we can directly culture the stromal vascular fraction (SVF) cells in defined cell culture conditions to obtain hASCs. Cells proliferate while remaining undifferentiated, as shown by Flow Cytometry (FACS), Quantitative Reverse Transcription PCR (RT-qPCR) assays, and their secretion products. Using the UrSuppe cell culture medium, maximum cell densities between 0.51 and 0.80 × 105 cells/cm2 (=2.55–4.00 × 105 cells/mL) were obtained. As the expansion of hASCs represents only the first step in a cell therapeutic protocol or further basic research studies, we formulated two chemically defined media to differentiate the expanded hASCs in white or beige/brown adipocytes. These new media could help translate research projects into the clinical application of hASCs and study ex vivo the biology in healthy and dysfunctional states of adipocytes and their precursors. Following the cell culture system developers’ practice and obvious reasons related to the formulas’ patentability, the defined media’s composition will not be disclosed in this study.


2010 ◽  
Vol 35 (10) ◽  
pp. 1635-1642 ◽  
Author(s):  
Sascha Wohnsland ◽  
Heinrich F. Bürgers ◽  
Wolfgang Kuschinsky ◽  
Martin H. Maurer

Sign in / Sign up

Export Citation Format

Share Document