scholarly journals Carbofuran Induced Oxidative Stress in Rat Heart: Ameliorative Effect of Vitamin C

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Sunil Kumar Jaiswal ◽  
Nikhat J. Siddiqi ◽  
B. Sharma

The aim of this study was to evaluate the effect of carbofuran on the levels of certain biomarkers in heart of rat exposed to sublethal concentrations of pesticide for 30 days after each interval of 24 h. The ameliorative effect of vitamin C by pretreatment of rats was also monitored. The results indicated that the activities of acetylcholinesterase and lactate dehydrogenase (LDH) decreased significantly in rat heart tissues, the extent of inhibition being concentration dependent. In contrast, the level of LDH increased in serum. The levels of malondialdehyde, total thiols, and glutathione were significantly elevated whereas the activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione-S-transferase were remarkably decreased in rat heart tissues. The serum concentrations of cholesterol increased by 47 and 77% and high density lipids decreased by 35 and 64%, respectively, due to exposure to 5 and 10% LD50 of carbofuran. The prior treatment of rats with vitamin C (100 mg kg−1 body weight) exerted significant ameliorative effect. The recovery was higher at low carbofuran concentration (5%) tested. The results indicated that carbofuran induced oxidative stress and caused damage to cardiac tissues, which could be recovered by prior application of vitamin C.

2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


2021 ◽  
Vol 13 (2) ◽  
pp. 222-234
Author(s):  
Maha I. Alkhalaf ◽  
Wafa S. Alansari

Gold nanoparticles (GNPs) are the most commonly used metal nanoparticles due to their promising characteristics. However, application of GNs in medical and biological fields has resulted in toxicity to several organs. Indole-3-carbinol (I3C) and sulforaphane (SF) are the two well-known natural compounds, largely present in cruciferous vegetables. This study aimed to explore the therapeutic efficacy of I3C and SF alone or in combination against GN-induced renal and cardiac toxicities. Fifty male Albino rats were randomly segregated into five groups with each group containing 10 rats; G1, control; G2, intraperitoneally administered with a suspension of GNPs (10 nm in size; 20 µg/kg body weight (b.w.) for 7 days; G3, GN-injected rats, supplemented with SF (5 mg/kg b.w) daily for 7 days; G4, GN-injected rats, supplemented orally with I3C (150 mg/kg b.w.) for 7 days and G5, GN-injected rats supplemented orally with SF and I3C daily for 7 days. GN treatment significantly disturbed kidney functional markers, as evidenced by significantly increased levels of urea, creatinine and creatine kinase. Additionally, GNs significantly increased renal and cardiac levels of malondialdehyde, 8-hydroxydeoxyguanosine and interleukin-6, and depleted, glutathione S-transferase, glutathione reductase, superoxide dismutase, total antioxidant capacity, and nuclear factor erythroid 2-related factor 2. In contrast, treatment with I3C and SF alone or in combination significantly restored all the parameters to their near normal levels. GN induced histological abnormalities were also significantly attenuated. Taken together, the data indicate that the SF and I3C are more effective when given separately than when given together in lowering GN-induced toxicity by their ability to alleviate oxidative stress and inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Katarzyna Knapik ◽  
Karolina Sieroń ◽  
Ewa Wojtyna ◽  
Grzegorz Onik ◽  
Ewa Romuk ◽  
...  

Objective. The main aim of the study was an assessment of the influence of rapid weight loss on oxidative stress parameters in judokas differing in weight reduction value. Materials and Methods. The study included 30 judokas with an age range of 18-30 years (mean age: 22.4±3.40 years). Enzymatic and nonenzymatic antioxidative markers, lipid peroxidation markers, and total oxidative stress were assessed three times: one week before a competition (the first stage), after gaining the desired weight (the second stage), and one week after the competition (the third stage). Results. Between the first and the second stage, the concentration of lipid hydroperoxides (LPH) decreased significantly. The superoxide dismutase (SOD), copper- and zinc-containing superoxide dismutase (Cu,Zn-SOD), ceruloplasmin (CER), malondialdehyde (MDA), LPH, and total oxidative stress (TOS) concentrations were the lowest one week after the competition. Linear regression indicated that the emphases on increased weight reduction increased the activity of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and protein sulfhydryl (PSH) between the first and the second stage of the study. Moderate weight reduction (2-5%) resulted in elevated levels of SOD, Mn-SOD, LPH, MDA, and TOS in comparison to low and high reductions. An opposite relation was observed in PSH. In judokas, the precompetitional weight reduction range was 0.44-6.10% (mean: 2.93%±1.76%) of the initial body weight. Concentrations of superoxide dismutase (SOD; p<.01), manganese-dependent superoxide dismutase (Mn-SOD; p<.001), and ceruloplasmin (CER; p<.05) decreased between the first and the third stage of the study as well between the second and third one. Before competitions, a decrease in lipid hydroperoxide (LPH; p<.01) concentration was observed. A reduction of malondialdehyde (MDA; p<.05), LPH (p<.01), and total oxidative stress (TOS; p<.05) levels between the first and the final stage occurred. The increase in weight reduction was linearly correlated with the rise of glutathione peroxidase (GPx; p<.05), glutathione reductase (GR; p<.05), glutathione S-transferase (GST; p<.05), and protein sulfhydryl (PSH; p<.05) concentrations between the first and the second stage of the study. Moderate weight reduction (2-5%) resulted in elevated levels of SOD (p<.05), Mn-SOD (p<.05), LPH (p<.05), MDA (p<.05), and TOS (p<.05) in comparison to low and high reductions. An opposite relation was observed in PSH (p<.005). Conclusions. The effect of weight reduction in judo athletes on prooxidative-antioxidative system diversity depends on the weight reduction value.


2011 ◽  
Vol 28 (8) ◽  
pp. 720-733 ◽  
Author(s):  
Jawahar B Samuel ◽  
Jone A Stanley ◽  
Ganapathy Vengatesh ◽  
Rajendran A Princess ◽  
Sridhar Muthusami ◽  
...  

2010 ◽  
Vol 56 (10) ◽  
pp. 816-821 ◽  
Author(s):  
Snowber Yousuf ◽  
Aijaz Ahmad ◽  
Amber Khan ◽  
Nikhat Manzoor ◽  
Luqman Ahmad Khan

This study was carried out to show the effect of diallyldisulphide (DADS), an important organosulphur compound found in garlic ( Allium sativum ), on antioxidant systems in Candida species. Changes in antioxidant metabolites and antioxidant activity in the presence of DADS were found in Candida albicans and Candida tropicalis . Candida cells were treated with sublethal concentrations of DADS. DADS caused a decrease in the activity of all antioxidant enzymes except catalase, resulting in oxidative stress and damaged cells. The amount of oxidative stress generated by DADS was found to be a function of its concentration. A significant decrease in superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase activities but an increase in catalase activity were observed. Increased levels of lipid peroxidation and decreased levels of glutathione were observed in treated cells. Activity of glucose-6-phosphate dehydrogenase decreased significantly following DADS treatment and could be correlated with a decrease in glutathione concentration in both Candida species. These results indicate that diallyl disulphide acts as a pro-oxidant to Candida species and hence may act as a potent antifungal in the management of candidiasis.


2022 ◽  
Vol 20 (4) ◽  
pp. 63-70
Author(s):  
O. V. Smirnova ◽  
V. V. Tsukanov ◽  
A. A. Sinyakov ◽  
O. L. Moskalenko ◽  
N. G. Elmanova ◽  
...  

Background. The problem of gastric cancer remains unresolved throughout the world, while chronic atrophic gastritis (CAG) increases the likelihood of its development by 15 times. In the Russian Federation, the incidence of gastric cancer (GC) is among the highest, with it prevailing among males. One of the leading mechanisms in molecular pathology of membranes is lipid peroxidation (LPO). The severity of oxidative membrane damage depends on concomitant diseases, contributing to emergence and progression of pathological processes and development of cancer. Currently, the problem of LPO is unsolved in biological systems.The aim of this study was to investigate the state of LPO and antioxidant defense system in CAG and GC. Materials and methods. The parameters were studied in 45 patients with CAG and 50 patients with GC. The control group included 50 practically healthy volunteers without gastrointestinal complaints, who did not have changes in the gastric mucosa according to the fibroesophagogastroduodenoscopy (FEGDS) findings.Results. In patients with CAG, an increase in malondialdehyde, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase was found in the blood plasma compared with the control group. In patients with CAG, lipid peroxidation was activated, and the malondialdehyde level increased by 3.5 times relative to normal values. At the same time, the body fought against oxidative stress by increasing the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase. All patients with GC showed pronounced oxidative stress in the blood plasma in the form of a 45-fold increase in malondialdehyde. The activity of the main antioxidant enzyme superoxide dismutase was reduced in GC. Catalase was activated, which indicated pronounced oxidative stress, significant damage to blood vessels, and massive cell death. Glutathione-related enzymes (glutathione S-transferase and glutathione peroxidase) and the antioxidant protein ceruloplasmin were activated, which also indicated significant oxidative stress and severe intoxication in patients with GC.Conclusion. Depending on the stage and type of cancer, an in-depth study of lipid peroxidation and factors of the antioxidant defense system can be used to correct therapy and prevent cancer and can serve as markers of progression and prognosis in gastric cancer. 


2019 ◽  
Vol 2 (1) ◽  
pp. 130-136
Author(s):  
M. Adam

Tiger nut is a small tuberous rhizome with medicinal and antioxidant properties. The present study was conducted to investigate the ameliorative effect of the methanol extract of tiger nut against the oxidative stress induced by lead acetate poisoning in Red Sokoto goat (RSG). Twelve adults Red Sokoto goat (16.50 ± 1.41 to 21.92 ± 0.97 kg) were grouped into four. Group I was administered with equivalent volume of distilled water. Group II was administered with lead acetate (200 mg/kg) only. Group III was administered with methanol extract of tiger nut (METN) (150 mg/kg) and lead acetate (200 mg/kg). Group IV was administered METN (200 mg/kg) only. The serum oxidative stress changes in the different experimental groups were determined by commercial kits. The distilled water group showed no toxic response. The lead acetate (200 mg/kg) group showed decreased activity levels of glutathione, superoxide dismutase (SOD) and catalase (CAT). The co-treatment groups with lead acetate and METN showed an increase in serum glutathione peroxidase (GPx) activity, CAT and SOD. Additionally, there was a decreased MDA concentration in the same group. The group administered with METN only showed slight changes in the activities of oxidative stress makers. In conclusion, Oxidative stress biomarkers such as glutathione peroxidases, superoxide dismutase, catalase and malondialdehyde were altered in a manner indicative of oxidative stress following lead acetate exposure and ameliorated to some extent by methanolic extract of tiger nut.


Sign in / Sign up

Export Citation Format

Share Document