scholarly journals The ETS-Domain Transcription Factor Elk-1 Regulates COX-2 Gene Expression and Inhibits Glucose-Stimulated Insulin Secretion in the Pancreaticβ-Cell Line INS-1

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Xiong-Fei Zhang ◽  
Yi Zhu ◽  
Wen-Biao Liang ◽  
Jing-Jing Zhang

Cyclooxygenase-2 (COX-2) expression is associated with many aspects of physiological and pathological conditions, including pancreaticβ-cell dysfunction. Prostaglandin E2 (PGE2) production, as a consequence of COX-2 gene induction, has been reported to impairβ-cell function. The molecular mechanisms involved in the regulation of COX-2 gene expression are not fully understood. We previously demonstrated that transcription factor Elk-1 significantly upregulated COX-2 gene promoter activity. In this report, we used pancreaticβ-cell line (INS-1) to explore the relationships between Elk-1 and COX-2. We first investigated the effects of Elk-1 on COX-2 transcriptional regulation and expression in INS-1 cells. We thus undertook to study the binding of Elk-1 to its putative binding sites in the COX-2 promoter. We also analysed glucose-stimulated insulin secretion (GSIS) in INS-1 cells that overexpressed Elk-1. Our results demonstrate that Elk-1 efficiently upregulates COX-2 expression at least partly through directly binding to the −82/−69 region of COX-2 promoter. Overexpression of Elk-1 inhibits GSIS in INS-1 cells. These findings will be helpful for better understanding the transcriptional regulation of COX-2 in pancreaticβ-cell. Moreover, Elk-1, the transcriptional regulator of COX-2 expression, will be a potential target for the prevention ofβ-cell dysfunction mediated by PGE2.

2020 ◽  
Author(s):  
Ada Admin ◽  
Kuntol Rakshit ◽  
Aleksey V. Matveyenko

Type 2 diabetes mellitus (T2DM) is characterized by β cell dysfunction due to impaired glucose-stimulated insulin secretion (GSIS). Studies show that β cell circadian clocks are important regulators of GSIS and glucose homeostasis. These observations raise the question whether enhancement of the circadian clock in β cells will confer protection against β cell dysfunction under diabetogenic conditions. To test this we employed an approach by first generating mice with β cell-specific inducible overexpression of <i>Bmal1</i> (core circadian transcription factor; <i>β-Bmal1<sup>OV</sup></i>). We subsequently examined the effects of <i>β-Bmal1<sup>OV</sup> </i>on the circadian clock, GSIS, islet transcriptome, and glucose metabolism in context of diet-induced obesity. We additionally tested the effects of circadian clock-enhancing small molecule Nobiletin on GSIS in mouse and human control and T2DM islets. We report that <i>β-Bmal1<sup>OV</sup> </i>mice display<i> </i>enhanced islet circadian clock amplitude, augmented <i>in vivo</i> and <i>in vitro</i> GSIS and are protected against obesity-induced glucose intolerance. These effects were associated with increased expression of purported BMAL1-target genes mediating insulin secretion, processing, and lipid metabolism. Furthermore, exposure of isolated islets to Nobiletin enhanced β cell secretory function in <i>Bmal1</i>-dependent manner. This work suggests therapeutic targeting of the circadian system as a potential strategy to counteract β cell failure under diabetogenic conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
L. R. Cataldo ◽  
M. L. Mizgier ◽  
D. Busso ◽  
P. Olmos ◽  
J. E. Galgani ◽  
...  

High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependentβ-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treatedβ-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets fromdb/dband wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6β-cell was determined. Lower Maob expression was found in islets fromdb/dbversus WT mice and in MIN6β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%;p<0.0001) and oleate (−43%;p<0.0001) were detected in MIN6β-cells. In conclusion, known defects of GSIS in islets fromdb/dbmice and MIN6β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.


2021 ◽  
Author(s):  
Mara Suleiman ◽  
Xiaoyan Yi ◽  
Emanuele Bosi ◽  
Frederic Burdet ◽  
Carmela De Luca ◽  
...  

Abstract Remission of type 2 diabetes (T2D) may occur after very low-calorie diets or bariatric surgery, and is associated with improved pancreatic beta cell function. Here, we evaluated if T2D beta cell dysfunction can be rescued ex-vivo and which are the molecular mechanisms involved. Islets from 19 T2D donors were studied after isolation (“basal”) and following culture at 5.5 or 11.1 mmol/l glucose (“cultured”). We evaluated glucose-stimulated insulin secretion (GSIS) and transcriptomes by RNA sequencing, correlated insulin secretion changes (“cultured” vs “basal”) to global gene expression, and searched for potential therapeutic gene targets and compounds that mimic gene signatures of recovered beta cell function in T2D islets. GSIS improved in 12 out of 19 islet preparations from T2D donors after culture at 5.5 mmol/l glucose (insulin stimulation index increased from 1.4±0.1 to 2.3±0.2, p<0.01), mainly due to greater insulin response to high glucose. No improvement was seen in islets cultured at 11.1 mmol/l glucose. Functional improvement was accompanied by changes in expression of 438 genes, many of which involved in functional and inflammatory processes. Of them, 123 were significantly correlated with changes in glucose-stimulated insulin secretion. Drug repurposing and target identification analyses for beta cell functional recovery predicted several chemical (including Src inhibitors and anti-inflammatory drugs) and genetic hits in pathways such as chemokine, MAPK, ERBB signaling, and autophagy. In conclusion, defective insulin secretion in T2D can be rescued, at least in part, by a “non-diabetic” milieu, demonstrating important T2D beta cell functional plasticity. This recovery associates with specific transcriptomic traits, pointing to known as well as novel therapeutic targets to induce T2D remission.


2020 ◽  
Author(s):  
Ada Admin ◽  
Kuntol Rakshit ◽  
Aleksey V. Matveyenko

Type 2 diabetes mellitus (T2DM) is characterized by β cell dysfunction due to impaired glucose-stimulated insulin secretion (GSIS). Studies show that β cell circadian clocks are important regulators of GSIS and glucose homeostasis. These observations raise the question whether enhancement of the circadian clock in β cells will confer protection against β cell dysfunction under diabetogenic conditions. To test this we employed an approach by first generating mice with β cell-specific inducible overexpression of <i>Bmal1</i> (core circadian transcription factor; <i>β-Bmal1<sup>OV</sup></i>). We subsequently examined the effects of <i>β-Bmal1<sup>OV</sup> </i>on the circadian clock, GSIS, islet transcriptome, and glucose metabolism in context of diet-induced obesity. We additionally tested the effects of circadian clock-enhancing small molecule Nobiletin on GSIS in mouse and human control and T2DM islets. We report that <i>β-Bmal1<sup>OV</sup> </i>mice display<i> </i>enhanced islet circadian clock amplitude, augmented <i>in vivo</i> and <i>in vitro</i> GSIS and are protected against obesity-induced glucose intolerance. These effects were associated with increased expression of purported BMAL1-target genes mediating insulin secretion, processing, and lipid metabolism. Furthermore, exposure of isolated islets to Nobiletin enhanced β cell secretory function in <i>Bmal1</i>-dependent manner. This work suggests therapeutic targeting of the circadian system as a potential strategy to counteract β cell failure under diabetogenic conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lina Sakhneny ◽  
Alona Epshtein ◽  
Limor Landsman

Abstractβ-Cells depend on the islet basement membrane (BM). While some islet BM components are produced by endothelial cells (ECs), the source of others remains unknown. Pancreatic pericytes directly support β-cells through mostly unidentified secreted factors. Thus, we hypothesized that pericytes regulate β-cells through the production of BM components. Here, we show that pericytes produce multiple components of the mouse pancreatic and islet interstitial and BM matrices. Several of the pericyte-produced ECM components were previously implicated in β-cell physiology, including collagen IV, laminins, proteoglycans, fibronectin, nidogen, and hyaluronan. Compared to ECs, pancreatic pericytes produce significantly higher levels of α2 and α4 laminin chains, which constitute the peri-islet and vascular BM. We further found that the pericytic laminin isoforms differentially regulate mouse β-cells. Whereas α2 laminins promoted islet cell clustering, they did not affect gene expression. In contrast, culturing on Laminin-421 induced the expression of β-cell genes, including Ins1, MafA, and Glut2, and significantly improved glucose-stimulated insulin secretion. Thus, alongside ECs, pericytes are a significant source of the islet BM, which is essential for proper β-cell function.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 483
Author(s):  
Dahae Lee ◽  
Jun Yeon Park ◽  
Sanghyun Lee ◽  
Ki Sung Kang

In this study, we examined the effect of ethanolic extract of Salicornia herbacea (ESH), isorhamnetin 3-O-glucoside (I3G), quercetin 3-O-glucoside (Q3G), quercetin, and isorhamnetin on α-glucosidase activity and glucose-stimulated insulin secretion (GSIS) in insulin-secreting rat insulinoma (INS-1) cells. A portion of the ethyl acetate fraction of ESH was chromatographed on a silica gel by a gradient elution with chloroform and methanol to provide Q3G and I3G. ESH, Q3G, and quercetin inhibited α-glucosidase activity, and quercetin (IC50 value was 29.47 ± 3.36 μM) inhibited the activity more effectively than Q3G. We further demonstrated that ESH, Q3G, quercetin, I3G, and isorhamnetin promote GSIS in INS-1 pancreatic β-cells without inducing cytotoxicity. Among them, I3G was the most effective in enhancing GSIS. I3G enhanced the phosphorylation of total extracellular signal-regulated kinase (ERK), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1), which are associated with insulin secretion and β-cell function. As components of ESH, Q3G has the potential to regulate blood glucose by inhibiting α-glucosidase activity, and I3G enhances the insulin secretion, but its bioavailability should be considered in determining biological importance.


2012 ◽  
Vol 216 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Olivier Le Bacquer ◽  
Gurvan Queniat ◽  
Valery Gmyr ◽  
Julie Kerr-Conte ◽  
Bruno Lefebvre ◽  
...  

Regulated associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (rictor) are two proteins that delineate two different mTOR complexes, mTORC1 and mTORC2 respectively. Recent studies demonstrated the role of rictor in the development and function of β-cells. mTORC1 has long been known to impact β-cell function and development. However, most of the studies evaluating its role used either drug treatment (i.e. rapamycin) or modification of expression of proteins known to modulate its activity, and the direct role of raptor in insulin secretion is unclear. In this study, using siRNA, we investigated the role of raptor and rictor in insulin secretion and production in INS-1 cells and the possible cross talk between their respective complexes, mTORC1 and mTORC2. Reduced expression of raptor is associated with increased glucose-stimulated insulin secretion and intracellular insulin content. Downregulation of rictor expression leads to impaired insulin secretion without affecting insulin content and is able to correct the increased insulin secretion mediated by raptor siRNA. Using dominant-negative or constitutively active forms of Akt, we demonstrate that the effect of both raptor and rictor is mediated through alteration of Akt signaling. Our finding shed new light on the mechanism of control of insulin secretion and production by the mTOR, and they provide evidence for antagonistic effect of raptor and rictor on insulin secretion in response to glucose by modulating the activity of Akt, whereas only raptor is able to control insulin biosynthesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Neel Patel ◽  
William S. Bush

Abstract Background Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. Results We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. Conclusions Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1087
Author(s):  
Dahae Lee ◽  
Jin Su Lee ◽  
Jurdas Sezirahiga ◽  
Hak Cheol Kwon ◽  
Dae Sik Jang ◽  
...  

Chocolate vine (Akebia quinata) is consumed as a fruit and is also used in traditional medicine. In order to identify the bioactive components of A. quinata, a phytosterol glucoside stigmasterol-3-O-β-d-glucoside (1), three triterpenoids maslinic acid (2), scutellaric acid (3), and hederagenin (4), and three triterpenoidal saponins akebia saponin PA (5), hederacoside C (6), and hederacolchiside F (7) were isolated from a 70% EtOH extract of the fruits of A. quinata (AKQU). The chemical structures of isolates 1–7 were determined by analyzing the 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data. Here, we evaluated the effects of AKQU and compounds 1–7 on insulin secretion using the INS-1 rat pancreatic β-cell line. Glucose-stimulated insulin secretion (GSIS) was evaluated in INS-1 cells using the GSIS assay. The expression levels of the proteins related to pancreatic β-cell function were detected by Western blotting. Among the isolates, stigmasterol-3-O-β-d-glucoside (1) exhibited strong GSIS activity and triggered the overexpression of pancreas/duodenum homeobox protein-1 (PDX-1), which is implicated in the regulation of pancreatic β-cell survival and function. Moreover, isolate 1 markedly induced the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), insulin receptor substrate-2 (IRS-2), phosphoinositide 3-kinase (PI3K), and Akt, which regulate the transcription of PDX-1. The results of our experimental studies indicated that stigmasterol-3-O-β-d-glucoside (1) isolated from the fruits of A. quinata can potentially enhance insulin secretion, and might alleviate the reduction in GSIS during the development of T2DM.


Sign in / Sign up

Export Citation Format

Share Document