scholarly journals Frequency-Adjustable Small Zeroth-Order Resonant Antenna with Capacitor-Loaded Rectangular Slot on Ground Plane

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Youngsoo Jang ◽  
Sungjoon Lim

A capacitor-loaded electrical small zeroth-order resonant (ZOR) antenna is proposed. The proposed antenna is designed on the basis of a mushroom structure for zeroth-order resonance. To obtain a compact size, the proposed antenna has a rectangular slot on the ground plane, and the chip capacitor is mounted on the slot. The resonant frequency is easily controlled from 2.82 GHz to 2.29 GHz by changing the capacitance from 1 pF to 7 pF, respectively. Therefore, the proposed antenna has the advantages of a small antenna size as well as easy frequency adjustment.

2021 ◽  
Vol 35 (11) ◽  
pp. 1418-1419
Author(s):  
Yuhao Feng ◽  
Yiming Chen ◽  
Atef Elsherbeni ◽  
Khalid Alharbi

A compact size arrow shaped patch in a rectangular slot antenna is designed for 5G communications in the lower 3 to 6 GHz band. The antenna element is fed through a coplanar waveguide with partial ground plane for better impedance matching with 50 Ohms across the entire band. The maximum gain of a single element is 3.8 dB at 3.7 GHz, while for linear arrays of 5 and 15 elements with uniform excitation the maximum gains are 10.9 dB and 16 dB, respectively. The 5 and 15 elements arrays provide scanning range with no significant degradation of the main beam up to 30˚ and 45˚, respectively. The properties of this antenna element makes it suitable for 5G wireless mobile devices and miniaturized base stations antenna arrays.


2017 ◽  
Vol 9 (7) ◽  
pp. 1541-1545 ◽  
Author(s):  
Rachid Dakir ◽  
Jamal Zbitou ◽  
Ahmed Mouhsen ◽  
Abdelwahed Tribak ◽  
Angel Mediavilla Sanchez ◽  
...  

In this paper, the design of a new compact uniplanar coplanar waveguide-fed antenna for multiband wireless application is presented and investigated. This antenna has a compact size of 25 × 25 mm2 and consists of a three parallel stub optimized added on rectangular slot to the radiator patch and T-shaped which inverted in the ground plane. The final prototype antenna designing resonantes at frequency bands (2.4–2.9 GHz), (3.7–5.2 GHz), and (5.7–6 GHz) with a return loss less than −10 dB. Details of the antenna configuration, design, simulation, and experimental results are presented, investigated, and discussed. The compactness, simple feeding technique, and conception of the uniplanar design make it easy to be integrated within devices of multiples wireless applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Rezaul Azim ◽  
Mohammad Tariqul Islam ◽  
Norbahiah Misran ◽  
Baharudin Yatim ◽  
Haslina Arshad

A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Rongling Jian ◽  
Yueyun Chen ◽  
Taohua Chen

In this paper, a novel wideband circularly polarized (CP) millimeter wave (mmWave) microstrip antenna is presented. The proposed antenna consists of a central patch and a microstrip line radiator. The CP radiation is achieved by loading a rectangular slot on the ground plane. To improve the 3-dB axial ratio bandwidth (ARBW), two symmetric parasitic rectangular patches paralleled to a central patch and a slit positioned to the right of the central patch are loaded. To verify this design, the proposed antenna is fabricated with a small antenna of 2.88 × 3.32 × 0.508 mm3. The measured impedance bandwidth (IMBW) for S11<−10 dB of the proposed antenna is 35.97% (22.8 to 33.8 GHz). Meanwhile, the simulation result shows that the 3-dB ARBW is 15.19% (28.77 to 33.5 GHz) within impedance bandwidth, and the peak gain is from 5.08 to 5.22 dBic within 3-dB ARBW. The proposed antenna is suitable for CP applications in the Ka-band.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Do-Gu Kang ◽  
Jinpil Tak ◽  
Jaehoon Choi

A planar MIMO antenna with slits for WBAN applications is proposed. The antenna consists of two PIFAs, ground pads, and two slits. By adding ground pads, the antenna size is reduced with improved impedance matching. Through two slits in a ground plane, the isolation characteristic is improved and the resonant frequency can be controlled. To analyze the antenna performance on a human body, the proposed antenna on a human equivalent flat phantom is investigated through simulations. Regardless of the existence of the phantom, the antenna operates in 2.4 GHz ISM band with the isolation higher than 18 dB.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
N. Prombutr ◽  
P. Kirawanich ◽  
P. Akkaraekthalin

This article presents a bandwidth enhancing technique using a modified ground plane with diagonal edges, rectangular slot, and T-shape cut for the design of compact antennas. The proposed low-cost, compact-size circular patch antenna on 3 cm 5.1 cm printed circuit board (FR-4) is designed and validated through simulations and experiments. Results show that the T-shaped ground plane with the presence of the diagonal cuts at the top corners and the rectangular slots can increase the bandwidth. Return losses of 19 and 26 dB for the first and second resonant frequencies, respectively, can be achieved when the depth of the diagonal cut is 5 mm, the dimension of each rectangular slot is  mm, and the T-shaped size is  mm, providing a 28.67% wider bandwidth than FCC standard.


2013 ◽  
Vol 481 ◽  
pp. 254-257
Author(s):  
Li Ping Han ◽  
Long Fei Hao ◽  
Run Bo Ma ◽  
Wen Mei Zhang

In this paper, a compact differential dual-frequency antenna based on metamaterial is presented. To realize the dual-frequency operation of the left-handed and zeroth-order resonant modes, a ring slot and two diagonal slots are embedded in the radiating patch, and via holes are employed to connect the patch and the ground plane. In order to improve the impedance matching of the antenna, four corners are truncated in the ground plane. The proposed antenna has a compact size of 40 mm × 40 mm, which equals to 0.25 λ1 × 0.25 λ1 (λ1, the guided wavelength at f1). The simulated results show that the proposed antenna can operate at 0.89 and 1.79 GHz bands. Meanwhile, good radiation performances are achieved.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 193
Author(s):  
M Venkata Narayana ◽  
Govardhani. Immadi ◽  
Habibulla Khan ◽  
Y Meena Kumari

In view with the latest technologies, compact device sizes had become a greater focus in industry because of which the demand for small antenna escalates. But electrically small antennas have high quality factor because of which the gain decreases. Therefore, an antenna was designed to improve the gain using the meander line concept based on the ground plane effect. A finite ground plane affects the resonant frequency and as the ground plane size increases, the resonant frequency decreases. By using a truncated ground plane, the antenna efficiency, gain and radiation pattern are improved. The antenna design had been modified based on another important concept of efficiently occupying the available volume. The antenna was designed on a cubic configuration and by using the two general techniques of modifying the geometry and truncating the ground plane, the gain of the antenna had been improved from 7.05dB to 8.03dB. 


Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Sachin Kumar

Abstract A compact circularly polarized (CP) patch antenna is presented for modern communication systems. The prospective antenna consists of a microstrip-line inset-fed rectangular patch and a defected ground plane. A rotated rectangular slot and a modified electric-inductive-capacitive (m-ELC) resonator are introduced in the patch and the ground plane to achieve multiband behaviour. A corner of the radiating patch is truncated and an arrow-shaped stub is introduced for generating circular polarization. The physical area of the substrate is 0.26λ0 × 0.22λ0, and the radiator size is 0.16λ0 × 0.14λ0, where λ0 is the free-space wavelength estimated at the lowest frequency. The measured (S11≤-10 dB) bandwidths of the antenna are 80 MHz (3.58%) at 2.23 GHz, 75 MHz (2.64%) at 2.84 GHz, 80 MHz (2.50%) at 3.19 GHz, and 70 MHz (1.82%) at 3.83 GHz. The measured 3-dB axial ratio bandwidths are 40 MHz (1.41%), 100 MHz (3.12%), and 60 MHz (1.57%) at 2.84, 3.20 and 3.82 GHz, respectively. The proposed planar antenna design does not need dual-feed or multi-layered patches for achieving multiple CP bands. It offers easy integration with the printed circuits of the communication systems.


Sign in / Sign up

Export Citation Format

Share Document