scholarly journals Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Rezaul Azim ◽  
Mohammad Tariqul Islam ◽  
Norbahiah Misran ◽  
Baharudin Yatim ◽  
Haslina Arshad

A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.

Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Youngsoo Jang ◽  
Sungjoon Lim

A capacitor-loaded electrical small zeroth-order resonant (ZOR) antenna is proposed. The proposed antenna is designed on the basis of a mushroom structure for zeroth-order resonance. To obtain a compact size, the proposed antenna has a rectangular slot on the ground plane, and the chip capacitor is mounted on the slot. The resonant frequency is easily controlled from 2.82 GHz to 2.29 GHz by changing the capacitance from 1 pF to 7 pF, respectively. Therefore, the proposed antenna has the advantages of a small antenna size as well as easy frequency adjustment.


Author(s):  
Rezaul Azim ◽  
AKM Moinul H. Meaze ◽  
Adnan Affandi ◽  
Md Mottahir Alam ◽  
Rumi Aktar ◽  
...  

Abstract This paper presents a low-profile multi-slotted patch antenna for long term evolution (LTE) and fifth-generation (5G) communication applications. The studied antenna comprised of a stepped patch and a ground plane. To attain the required operating band, three slots have been inserted within the patch. The insertion of the slots enhances the capacitive effect and helps the prototype antenna to achieve an operating band ranging from 3.15 to 5.55 GHz (S11 ≤−10 dB), covering the N77/N78/N79 for sub-6 GHz 5G wireless communications and LTE bands of 22/42/43/46. The wideband antenna presented in this paper offers omnidirectional stable radiation patterns, good gains, and efficiency with a compact size which make this design an ideal contender for wireless fidelity (WiFi), wireless local area network (WLAN), LTE, and sub-6 GHz 5G communication applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. N. Shakib ◽  
M. Moghavvemi ◽  
W. N. L. Mahadi

A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of0.182λ × 0.228λ × 0.018λwhereλis the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Lana Damaj ◽  
Anne-Claire Lepage ◽  
Xavier Begaud

A wideband dual-polarized coplanar waveguide (CPW) fed antenna integrating a wide stop-band filter is presented. The designed filter is based on a nonuniform defected ground structure (DGS) in order to obtain a wide stop-band and a compact size. This filter is used to reject harmonics and spurious radiation arising from the RF front end. The complete structure (antenna and filter) has been optimized to have a compact size of0.6×0.6λ02(λ0being the free-space wavelength at the lowest operating frequency). The realized antenna operates in the frequency range between 2.7 GHz and 5.9 GHz (bandwidth of about 74%). The isolation between feeding ports is more than 18 dB. The complete structure has a wide stop-band characteristic (103%) for harmonic rejection. The simulated numerical results have been confirmed with measurements.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yingsong Li ◽  
Wenxing Li ◽  
Qiubo Ye

A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Guohao Wang

We present a flexible ultrawideband (UWB) planar monopole antenna with dual-notched band characteristic printed on a polyimide substrate. The antenna is fed by a step coplanar waveguide (CPW) that provides smooth transitional impedance for improved matching. It operates from 2.76 to 10.6 GHz with return loss greater than 10 dB except for the notch band to reduce the interference with existing 3.5 GHz WiMAX band and 5.5 GHz WLAN band. With a combination of rectangular and circle patches in which the U-shaped slot is carved, the overall size of antenna is 30 mm × 20 mm. Moreover, a pair of arc-shaped stubs located at both sides of the feed line is utilized to create the notch band for WiMAX band. The results also show that the antenna has omnidirectional radiation pattern and smooth gain over the entire operational band.


2018 ◽  
Vol 10 (2) ◽  
pp. 227-233
Author(s):  
Gholamreza Karimi ◽  
Fatemeh Javidan ◽  
Amir Hossein Salehi

AbstractIn this paper, an ultra-wideband (UWB) band-pass filter (BPF) with a sharp notch band is presented. The UWB BPF consists of modified elliptical-ring and multi-mode stub-loaded resonator (MM-SLR). By adding the asymmetric tight coupled lines resonator via input/output (I/O) lines, it can be achieved UWB band-pass response. With adding two bends to the middle resonator, a notch band at 6.86 GHz is created, so that it can be controlled using the mathematical formulas (MF). In the meantime, the equivalent circuit of the middle resonator is obtained using L–C analysis. Measured results of fabricated filter have the advantage such as ultra-wide pass band (flandfHof the defined UWB pass band are 3.776 and 10.42 GHz, which satisfy the requirements of FCC-specified UWB limits), compact size, low insertion loss <0.65 dB and the stop band of the proposed filter is from 11.1 to 16.32 GHz with attenuation of −39.8 to −42.14 dB, respectively. The proposed UWB filter is realized using the substrate with dielectric constant of 2.2 and substrate height of 0.787 mm. Experimental verification is provided and good agreement has been found between simulation and measurement results.


Sign in / Sign up

Export Citation Format

Share Document