scholarly journals Efficacy ofAnnona squamosaL in the Synthesis of Glycosaminoglycans and Collagen during Wound Repair in Streptozotocin Induced Diabetic Rats

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Thangavel Ponrasu ◽  
Lonchin Suguna

The aim of this work was to find out the effects ofAnnona squamosaon the formation of glycosaminoglycans and collagen during wound healing in normal and diabetic rats. Diabetes induced rats were segregated into 4 groups, each containing six animals. Groups I and III served as the normal and diabetic control while groups II and IV served as normal and diabetic treated. The animals were treated with 200 μL ofAnnona squamosaextract topically. The granulation tissues formed were removed on the 8th day and the amount of glycosaminoglycans (GAGs) and collagen formed was evaluated by sequential extraction and SDSPAGE, respectively. Histological evaluation was also carried out using Masson's trichrome stain.In vitrowound healing efficacy ofA. squamosain human dermal fibroblast culture (HDF) was also carried out. The fibroblasts treated with varying concentrations ofA. squamosawere examined for proliferation and closure of the wound area and photographed.A. squamosaincreased cellular proliferation in HDF culture. The granulation tissues of treated wounds showed increased levels of glycosaminoglycans(P<0.05)and collagen which were also confirmed by histopathology. The results strongly substantiate the beneficial effects ofA. squamosaon the formation of glycosaminoglycans and collagen during wound healing.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Fouad Al-Bayaty ◽  
Mahmood Ameen Abdulla

Background and Purpose. This study aimed to evaluate the wound healing activities of Aftamed and chlorine dioxide gels in streptozotocin-induced diabetic rats. Experimental Approach. Forty-eight Sprague Dawley rats were chosen for this study, divided into 4 groups. Diabetes was induced. Two-centimeter-diameter full-thickness skin excision wounds were created. Animals were topically treated twice daily. Groups 1, the diabetic control group, were treated with 0.2 mL of sterile distilled water. Group 2 served as a reference standard were treated with 0.2 mL of Intrasite gel. Groups 3 and 4 were treated with 0.2 mL of Aftamed and 0.2 mL of chlorine dioxide gels respectively. Granulation tissue was excised on the 10th day and processed for histological and biochemical analysis. The glutathione peroxidase ,superoxide dismutase activities and the malondialdehyde (MDA) levels were determined. Results. Aftamed-treated wounds exhibited significant increases in hydroxyproline, cellular proliferation, the number of blood vessels, and the level of collagen synthesis. Aftamed induced an increase in the free radical-scavenging enzyme activity and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in the MDA level. Conclusions. This study showed that Aftamed gel is able to significantly accelerate the process of wound healing in diabetic rats.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abubakar Amali Muhammad ◽  
Nur Aimi Syarina Pauzi ◽  
Palanisamy Arulselvan ◽  
Faridah Abas ◽  
Sharida Fakurazi

Moringa oleiferaLam. (M. oleifera) from the monogeneric familyMoringaceaeis found in tropical and subtropical countries. The present study was aimed at exploring thein vitrowound healing potential ofM. oleiferaand identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction ofM. oleiferasignificantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction ofM. oleiferacontaining Vicenin-2 compound may enhance faster wound healingin vitro.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jianing Ding ◽  
Xin Wang ◽  
Bi Chen ◽  
Jieyuan Zhang ◽  
Jianguang Xu

The exosomes are derived from mesenchymal stem cells (MSCs) and may be potentially used as an alternative for cell therapy, for treating diabetic wounds, and aid in angiogenesis. This study, aimed to investigate whether exosomes originated from bone marrow-derived MSCs (BMSCs) preconditioned by deferoxamine (DFO-Exos) exhibited superior proangiogenic property in wound repair and to explore the underlying mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were used for assays involving cell proliferation, scratch wound healing, and tube formation. To test the effects in vivo, streptozotocin-induced diabetic rats were established. Two weeks after the procedure, histological analysis was used to measure wound-healing effects, and the neovascularization was evaluated as well. Our findings demonstrated that DFO-Exos activate the PI3K/AKT signaling pathway via miR-126 mediated PTEN downregulation to stimulate angiogenesis in vitro. This contributed to enhanced wound healing and angiogenesis in streptozotocin-induced diabetic rats in vivo. Our results suggest that, in cell-free therapies, exosomes derived from DFO preconditioned stem cells manifest increased proangiogenic ability.


2021 ◽  
Vol 12 (4) ◽  
pp. 61
Author(s):  
Mojtaba Koosha ◽  
Hadis Aalipour ◽  
Mohammad Javad Sarraf Shirazi ◽  
Ali Jebali ◽  
Hong Chi ◽  
...  

Chitosan/PVA hydrogel films crosslinked by the freeze–thaw method and containing honey and allantoin were prepared for application as wound dressing materials. The effects of the freeze–thaw process and the addition of honey and allantoin on the swelling, the gel content and the mechanical properties of the samples were evaluated. The physicochemical properties of the samples, with and without the freeze–thaw process, were compared using FTIR, DSC and XRD. The results showed that the freeze–thaw process can increase the crystallinity and thermal stability of chitosan/PVA films. The freeze–thaw process increased the gel content but did not have a significant effect on the tensile strength. The presence of honey reduced the swelling and the tensile strength of the hydrogels due to hydrogen bonding interactions with PVA and chitosan chains. Long-term cell culture experiments using normal human dermal fibroblast (NHDF) cells showed that the hydrogels maintained their biocompatibility, and the cells showed extended morphology on the surface of the hydrogels for more than 30 days. The presence of honey significantly increased the biocompatibility of the hydrogels. The release of allantoin from the hydrogel was studied and, according to the Korsmeyer–Peppas and Weibull models, the mechanism was mainly diffusional. The results for the antimicrobial activity against E. coli and S. aureus bacteria showed that the allantoin-containing samples had a more remarkable antibacterial activity against S. aureus. According to the wound healing experiments, 98% of the wound area treated by the chitosan/PVA/honey hydrogel was closed, compared to 89% for the control. The results of this study suggest that the freeze–thaw process is a non-toxic crosslinking method for the preparation of chitosan/PVA hydrogels with long term biocompatibility that can be applied for wound healing and skin tissue engineering.


2007 ◽  
Vol 342-343 ◽  
pp. 401-404 ◽  
Author(s):  
Yeon I Woo ◽  
Hyun Joo Son ◽  
Hye Ryeon Lim ◽  
Mi Hee Lee ◽  
Hyun Sook Baek ◽  
...  

Glucans have been reported to stimulate immunity and to promote wound healing. Adult human dermal fibroblast (aHDF) cultured in serum free (serum-starvation). Proliferation of aHDF was measured at various concentrations of β-glucan by MTT assay, and migration was observed for 36h on microscope. The result of fibroblast bioassay, β-glucan had positive influence. In this study, the direct effects of β-glucan on proliferation and migration of human dermal fibroblasts were examined in vitro. That means β-D-glucan has the effect to enhance proliferation and aHDF migration speed, and has the potential as a wound healing agent.


Author(s):  
Gulsah Gundogdu ◽  
Kemal Alp Nalci ◽  
Afife Busra Ugur Kaplan ◽  
Koksal Gundogdu ◽  
Tuba Demirci ◽  
...  

Wound healing remains a challenging clinical problem, especially in the presence of diabetes. Diabetic patients have the impaired ability to fight infection and insufficient inflammatory response. The aim of this study was to evaluate the effects of boronophenylalanine (BFA) and/or Zn-containing nanoemulsion (NE) formulations on wound healing in diabetic rats. MTT and scratch assays were performed to evaluate the proliferative effects of BFA and/or Zn on human dermal fibroblast (HDF) cells and the migration of these cells, respectively. The BFA and/or Zn-NE were prepared, and the effects of NEs on wound healing in diabetic rats were evaluated by applying once a day for 14 days. MTT assay showed that 10 to 25 µM BFA and/or 50 µM Zn had very significant positive effects on cell proliferation. In the scratch assay, 10 µM BFA significantly increased the migration of HDF cell compared with control. The droplet sizes of all the NEs were <115 nm and their zeta potential values were in range of (−) 23.9 ± 2.356 to (−) 33.1 ± 1.438 mV. There was a significant reduction in the wound contraction values (%) of the groups treated with the BFA and/or Zn-NE on the 14th day compared with the untreated diabetic rats group. According to histopathological findings, wound healing was nearly complete in BFA and/or Zn-NE compared with untreated diabetic rats. Especially, the group treated with the NE containing the low concentration of BFA showed highly promising results in wound healing of diabetic rats within 14 days with complete epithelialization and the completely closed wound area.


2020 ◽  
Vol 21 (8) ◽  
pp. 2929
Author(s):  
Manira Maarof ◽  
Shiplu Roy Chowdhury ◽  
Aminuddin Saim ◽  
Ruszymah Bt Hj Idrus ◽  
Yogeswaran Lokanathan

Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100–1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200–400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200–1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400–800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200–400 µg/mL DFCM-KM1 and DFCM-KM2, and 400–800 µg/mL DFCM-FM, which could be useful for treating skin injuries.


2021 ◽  
Vol 91 (3) ◽  
pp. 287-296
Author(s):  
Azad A. Ahanger ◽  
◽  
Shahid Prawez ◽  
Abdul Shakoor ◽  
Wasif Ahmad ◽  
...  

Hemin may be of potential therapeutic value in wound healing management in diabetics. It is an inducer of heme oxygenase-1, an enzyme which degrades heme and participates in cellular protection against oxidative stress, inflammation and apoptosis. Thus, in the present study, hemin (0.5%) was applied topically over excision wounds, and its therapeutic effect in wound healing evaluated in diabetic rats. Topical hemin application significantly increased the percentage of wound contraction on day 2 in diabetic rats, however, povidone-iodine did the same on day 7 compared to the diabetic control. A significant increase in hydroxyproline and glucosamine content was found on day 14 in the hemin treated wounds of diabetic rats vs. the diabetic control. The histology of the hemin treated rats was in agreement with the cellular proliferation and collagen synthesis in granulation tissue. Hemin significantly increases cytokine IL-10 and decreases TNF-α in the granulation tissue of the healed wounds of diabetic rats. The finding showing the pro-healing effects of hemin was endorsed by inhibition of mRNA expression of pro-inflammatory cytokine TNF-α and adhesion molecule ICAM-1, and up-regulation of anti-inflammatory cytokine IL-10 mRNA. Hence, topical hemin application (i) helps in early and fast wound contraction (ii) enhances the hydroxyproline and glucosamine content of wounds and (iii) modulates pro-healing mRNA expression of cytokines.


Sign in / Sign up

Export Citation Format

Share Document