scholarly journals Correction of Channel Imbalance for MIMO SAR Using Stepped-Frequency Chirps

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiulian Luo ◽  
Yunkai Deng ◽  
Robert Wang ◽  
Lei Guo ◽  
Mingjiang Wang

To simultaneously achieve two-dimensional high resolution and wide swath in synthetic aperture radar (SAR), azimuth MIMO structure combined with stepped-frequency chirp signals was developed via splitting the antenna intoNsubapertures. During transmitting each subaperture transmits a chirp pulse at a different carrier frequency, while during receiving every subaperture receives theNscattered pulses at the same time. Separating theNscattered pulses received by each subaperture and downlinking them to the ground yieldN2different signal paths. Due to the dedicated network in the SAR system, the channel imbalance is inevitable. To correct the channel imbalance, this paper presents an external calibration method, where the channel characteristics are estimated from the peak value of a strong point target for each channel. Simulation and real raw data experiments are performed to validate the proposed method.

2009 ◽  
Vol 10 (1-2) ◽  
pp. 41-53 ◽  
Author(s):  
Yingrui Hu ◽  
Xuegang Wang ◽  
Zhuming Chen

1991 ◽  
Vol 28 (2) ◽  
pp. 257-265 ◽  
Author(s):  
D. F. Graham ◽  
D. R. Grant

Side-looking, C-band synthetic-aperture radar (SAR) penetrates cloud and fog, and operates day or night, to produce pseudo-three-dimensional terrain images with enhanced topography and surface roughness. The images, which have a 20 m resolution and cover large areas, have been used to map the regional trends, patterns of lineaments, and terrain types over a 6200 km2 area of complex lithology, structure, and drift cover. Four lineament classes are differentiated. Glacial trends are clear, and bedrock structures (faults, fractures, joints, foliation, and folded bedding) with relief expression at the surface show through the drift as lineaments. They accurately reproduce most known features when compared with bedrock and Quatenary geology maps. Hitherto unrecognized structural elements are revealed. Tones and textures reflect minute surface roughness variations useful in terrain classification. SAR wide-swath-mode imagery is thus a valuable complement to aerial photography, and is superior in revealing hummocky moraine, ribbed moraine, boulder fields and stony till. Wider use of this imagery is encouraged.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jiajia Zhang ◽  
Guangcai Sun ◽  
Mengdao Xing ◽  
Zheng Bao ◽  
Fang Zhou

Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) using stepped frequency (SF) waveforms enables a high two-dimensional (2D) resolution with wider imaging swath at relatively low cost. However, only the stripmap mode has been discussed for SF MIMO-SAR. This paper presents an efficient algorithm to reconstruct the signal of SF MIMO-SAR in the spotlight and sliding spotlight modes, which includes Doppler ambiguity resolving algorithm based on subaperture division and an improved frequency-domain bandwidth synthesis (FBS) method. Both simulated and constructed data are used to validate the effectiveness of the proposed algorithm.


2017 ◽  
Vol 53 (21) ◽  
pp. 1424-1426
Author(s):  
Guangzuo Li ◽  
Ning Wang ◽  
Di Mo ◽  
Ran Wang ◽  
Zenghui Zhang ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


2018 ◽  
Vol 10 (12) ◽  
pp. 2060 ◽  
Author(s):  
Yoon Jung ◽  
Sang-Eun Park

In the diverse applications of polarimetric Synthetic Aperture Radar (SAR) systems, it is a crucial to conduct polarimetric calibration, which aims to remove the radar system distortion effects prior to utilizing polarimetric SAR observations. The objective of this study is to evaluate the performance of different polarimetric calibration methods. Two widely used methods, the Van Zyl and Quegan methods, and one recently proposed method, such as the Villa method, have been selected among various calibration methods in literature. The selected methods have basic differences in their assumptions that are applied to the polarimetric system model. In order to evaluate the calibration performances under different system parameters and ground characteristics, comparative analysis of the calibration results were conducted on synthetic polarimetric SAR data and ALOS PALSAR quad-pol mode data. Based on the experimental results, the advantages and limitations of different methods were clarified, and a simple hybrid calibration method is presented to further improve the polarimetric calibration performance.


Sign in / Sign up

Export Citation Format

Share Document