scholarly journals Specific Growth Rate Determines the Sensitivity ofEscherichia colito Lactic Acid Stress: Implications for Predictive Microbiology

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Roland Lindqvist ◽  
Gunilla Barmark

This study tested the hypothesis that sensitivity ofEscherichia colito lactic acid at concentrations relevant for fermented sausages (pH 4.6, 150 mM lactic acid,aw=0.92, temperature = 20 or 27°C) increases with increasing growth rate. ForE. colistrain 683 cultured in TSB in chemostat or batch, subsequent inactivation rates when exposed to lactic acid stress increased with increasing growth rate at harvest. A linear relationship between growth rate at harvest and inactivation rate was found to describe both batch and chemostat cultures. The maximum difference in T90, the estimated times for a one-log reduction, was 10 hours between bacteria harvested during the first 3 hours of batch culture, that is, at different growth rates. A 10-hour difference in T90would correspond to measuring inactivation at 33°C or 45°C instead of 37°C based on relationships between temperature and inactivation. At similar harvest growth rates, inactivation rates were lower for bacteria cultured at 37°C than at 15–20°C. As demonstrated forE. coli683, culture conditions leading to variable growth rates may contribute to variable lactic acid inactivation rates. Findings emphasize the use and reporting of standardised culture conditions and can have implications for the interpretation of data when developing inactivation models.

2003 ◽  
Vol 69 (9) ◽  
pp. 5685-5689 ◽  
Author(s):  
Joseph O. Falkinham

ABSTRACT The susceptibility of representative strains of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum (the MAIS group) to chlorine was studied to identify factors related to culture conditions and growth phase that influenced susceptibility. M. avium and M. intracellulare strains were more resistant to chlorine than were strains of M. scrofulaceum. Transparent and unpigmented colony variants were more resistant to chlorine than were their isogenic opaque and pigmented variants (respectively). Depending on growth stage and growth rate, MAIS strains differed in their chlorine susceptibilities. Cells from strains of all three species growing in early log phase at the highest growth rates were more susceptible than cells in log and stationary phase. Rapidly growing cells were more susceptible to chlorine than slowly growing cells. The chlorine susceptibility of M. avium cells grown at 30°C was increased when cells were exposed to chlorine at 40°C compared to susceptibility after exposure at 30°C. Cells of M. avium grown in 6% oxygen were significantly more chlorine susceptible than cells grown in air. Chlorine-resistant MAIS strains were more hydrophobic and resistant to Tween 80, para-nitrobenzoate, hydroxylamine, and nitrite than were the chlorine-sensitive strains.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


Author(s):  
Roseline Eleojo Kwasi ◽  
Iyanuoluwa Gladys Aremu ◽  
Qudus Olamide Dosunmu ◽  
Funmilola A. Ayeni

Background: Ogi constitutes a rich source of lactic acid bacteria (LAB) with associated health benefits to humans through antimicrobial activities. However, the high viability of LAB in Ogi and its supernatant (Omidun) is essential. Aims: This study was carried out to assess the viability of LAB in various forms of modified and natural Ogi and the antimicrobial properties of Omidun against diarrhoeagenic E coli. Methods and Material: The viability of LAB was assessed in fermented Ogi slurry and Omidun for one month and also freeze-dried Ogi with and without added bacterial strains for two months. A further 10 days viability study of modified Omidun, refrigerated Omidun, and normal Ogi was performed. The antimicrobial effects of modified Omidun against five selected strains of diarrhoeagenic E. coli (DEC) were evaluated by the co-culture method. Results: Both drying methods significantly affected carotenoids and phenolic compounds. The Ogi slurry had viable LAB only for 10 days after which, there was a succession of fungi and yeast. Omidun showed 2 log10cfu/ml reduction of LAB count each week and the freeze-dried Ogi showed progressive reduction in viability. Refrigerated Omidun has little viable LAB, while higher viability was seen in modified Omidun (≥2 log cfu/ml) than normal Omidun. Modified Omidun intervention led to 2-4 log reduction in diarrhoeagenic E. coli strains and total inactivation of shigella-toxin producing E. coli H66D strain in co-culture. Conclusions: The consumption of Ogi should be within 10 days of milling using modified Omidun. There are practical potentials of consumption of Omidun in destroying E. coli strains implicated in diarrhea. Keywords: Ogi, Omidun, lactic acid bacteria, diarrhoeagenic Escherichia coli strains, Viability.


2016 ◽  
Vol 82 (21) ◽  
pp. 6326-6334 ◽  
Author(s):  
Christina Böhnlein ◽  
Jan Kabisch ◽  
Diana Meske ◽  
Charles M. A. P. Franz ◽  
Rohtraud Pichner

ABSTRACTIn 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rareEscherichia coliserotype, O104:H4, that shared the virulence profiles of Shiga toxin-producingE. coli(STEC)/enterohemorrhagicE. coli(EHEC) and enteroaggregativeE. coli(EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food orin vitro, were compared with those ofE. coliO157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable thanE. coliO157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward severalE. colistrains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead ofE. coliO157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential.IMPORTANCEIn 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages thanE. coliO157:H7 strains.E. coliO104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potentialE. coliO104:H4 infection.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Valerie S. Forsyth ◽  
Chelsie E. Armbruster ◽  
Sara N. Smith ◽  
Ali Pirani ◽  
A. Cody Springman ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenicE. coli(ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than otherE. coliisolates and survive in that niche. To date, there has not been a reliable method available to measure their growth ratein vivo. Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robustin vivo, matching or exceedingin vitrogrowth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth ratesin vivoat 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR,E. coliin urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth ratesin vivoand resistance to the innate immune response appear to be critical phenotypes of UPEC strains.IMPORTANCEUropathogenicEscherichia coli(UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized byE. colito colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measurein vivogrowth rates of other bacterial pathogens during host colonization.


1978 ◽  
Vol 24 (1) ◽  
pp. 28-30 ◽  
Author(s):  
Adrian P. Wills ◽  
E. C. S. Chan

When deprived of biotin, Arthrobacter globiformis 425 exhibits abnormal morphology (large, branched forms of variable size) and a retardation of its normal growth rate. In chemostat cultures, when cells were grown under glucose limitation, the morphology was normal (coccoids or rods) at specific growth rates between 0.05 and 0.125 h−1 (doubling times between 14 and 5.5 h, respectively) at 25 °C. The coccoid-to-rod morphogenesis occurs at a specific growth rate of 0.11 h−1. At the same specific growth rates and temperature, but under biotin limitation, abnormal morphology was observed.


2021 ◽  
Vol 13 (1) ◽  
pp. 122-127
Author(s):  
Ayomide F. Sowemimo ◽  
Abiola O. Obisesan ◽  
Funmilola A. Ayeni

Kunu is a non-alcoholic fermented cereal beverage consumed primarily as a refreshing drink. This study investigated the effects of storage conditions on viability of Lactic Acid Bacteria (LAB) in kunu and the antibacterial effects of Kunu against diarrhoea caused by Escherichia coli strains. Kunu was prepared according to local traditional method. Viability counts of LAB in kunu stored at two different conditions, cold (4 ℃ average) and room temperature (26 ℃ average), were evaluated. Isolated LAB from kunu were identified by partial sequencing of 16S rRNA gene. Five pathotypes of diarrhoea caused by E. coli strains were co-cultured with kunu to evaluate its antimicrobial activities. Viable LAB count in kunu ranged from 5.0 x 109 to 1.0 x 1011 cfu/mL. Pediococcus pentosaceus, Lactobacillus plantarum and Leuconostoc pseudomesenteroides were identified from kunu. There is a drastic decrease (2-5 log reduction) in E. coli strains co-cultured with kunu. The observed high viable counts of beneficial LAB in kunu with its antimicrobial activities against diarrhoeaogenic E. coli strains indicates that kunu is not just a refreshing drink, but it also has antimicrobial potential against diarrhoea caused by E. coli.


2006 ◽  
Vol 69 (11) ◽  
pp. 2648-2663 ◽  
Author(s):  
ELEFTHERIOS H. DROSINOS ◽  
MARIOS MATARAGAS ◽  
SLAVICA VESKOVIĆ-MORAČANIN ◽  
JUDIT GASPARIK-REICHARDT ◽  
MIRZA HADŽIOSMANOVIĆ ◽  
...  

Listeria monocytogenes NCTC10527 was examined with respect to its nonthermal inactivation kinetics in fermented sausages from four European countries: Serbia-Montenegro, Hungary, Croatia, and Bosnia-Herzegovina. The goal was to quantify the effect of fermentation and ripening conditions on L. monocytogenes with the simultaneous presence or absence of bacteriocin-producing lactic acid bacteria (i.e., Lactobacillus sakei). Different models were used to fit the experimental data and to calculate the kinetic parameters. The best model was chosen based on statistical comparisons. The Baranyi model was selected because it fitted the data better in most (73%) of the cases. The results from the challenge experiments and the subsequent statistical analysis indicated that relative to the control condition the addition of L. sakei strains reduced the time required for a 4-log reduction of L. monocytogenes (t4D). In contrast, the addition of the bacteriocins mesenterocin Y and sakacin P decreased the t4D values for only the Serbian product. A case study for risk assessment also was conducted. The data of initial population and t4D collected from all countries were described by a single distribution function. Storage temperature, packaging method, pH, and water activity of the final products were used to calculate the inactivation of L. monocytogenes that might occur during storage of the final product (U.S. Department of Agriculture Pathogen Modeling Program version 7.0). Simulation results indicated that the addition of L. sakei strains significantly decreased the simulated L. monocytogenes concentration of ready-to-eat fermented sausages at the time of consumption.


2005 ◽  
Vol 71 (5) ◽  
pp. 2239-2243 ◽  
Author(s):  
Neelakantam V. Narendranath ◽  
Ronan Power

ABSTRACT The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast.


2005 ◽  
Vol 71 (3) ◽  
pp. 1417-1424 ◽  
Author(s):  
Patrick M. Lucas ◽  
Wout A. M. Wolken ◽  
Olivier Claisse ◽  
Juke S. Lolkema ◽  
Aline Lonvaud-Funel

ABSTRACT Histamine production from histidine in fermented food products by lactic acid bacteria results in food spoilage and is harmful to consumers. We have isolated a histamine-producing lactic acid bacterium, Lactobacillus hilgardii strain IOEB 0006, which could retain or lose the ability to produce histamine depending on culture conditions. The hdcA gene, coding for the histidine decarboxylase of L. hilgardii IOEB 0006, was located on an 80-kb plasmid that proved to be unstable. Sequencing of the hdcA locus disclosed a four-gene cluster encoding the histidine decarboxylase, a protein of unknown function, a histidyl-tRNA synthetase, and a protein, which we named HdcP, showing similarities to integral membrane transporters driving substrate/product exchange. The gene coding for HdcP was cloned downstream of a sequence specifying a histidine tag and expressed in Lactococcus lactis. The recombinant HdcP could drive the uptake of histidine into the cell and the exchange of histidine and histamine. The combination of HdcP and the histidine decarboxylase forms a typical bacterial decarboxylation pathway that may generate metabolic energy or be involved in the acid stress response. Analyses of sequences present in databases suggest that the other two proteins have dispensable functions. These results describe for the first time the genes encoding a histamine-producing pathway and provide clues to the parsimonious distribution and the instability of histamine-producing lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document