scholarly journals Numerical Study on Deformation and Interior Flow of a Droplet Suspended in Viscous Liquid under Steady Electric Fields

2014 ◽  
Vol 6 ◽  
pp. 532797 ◽  
Author(s):  
Zhentao Wang ◽  
Qingming Dong ◽  
Yonghui Zhang ◽  
Junfeng Wang ◽  
Jianlong Wen

A model based on the volume of fluid (VOF) method and leaky dielectric theory is established to predict the deformation and internal flow of the droplet suspended in another vicious fluid under the influence of the electric field. Through coupling with hydrodynamics and electrostatics, the rate of deformation and internal flow of the single droplet are simulated and obtained under the different operating parameters. The calculated results show that the direction of deformation and internal flow depends on the physical properties of fluids. The numerical results are compared with Taylor's theory and experimental results by Torza et al. When the rate of deformation is small, the numerical results are consistent with theory and experimental results, and when the rate is large the numerical results are consistent with experimental results but are different from Taylor's theory. In addition, fluid viscosity hardly affects the deformation rate and mainly dominates the deformation velocity. For high viscosity droplet spends more time to attain the steady state. The conductivity ratio and permittivity ratio of two different liquids affect the direction of deformation. When fluid electric properties change, the charge distribution at the interface is various, which leads to the droplet different deformation shapes.

Author(s):  
Tao Wang ◽  
Fanyu Kong ◽  
Sunsheng Yang ◽  
Yanxia Fu

A reserved running centrifugal pump can work as a hydraulic turbine with its wide application in industrial energy recovery and the development of micro-hydraulic power. In order to improve the efficiency from the point of turbine working condition, the impeller with forward-curved blades was designed and the hydraulic performances were further analyzed based on the commercial software ANSYS CFX 12.0 in this study. Moreover, to improve the computational accuracy of numerical simulations on turbines, the grid number, the turbulence model, the circumferential flow distribution in the clearance between the volute and the impeller as well as the grid distribution in the boundary layer were considered. According grid independency analysis, the 1.2 million grids’ number was assumed for numerical simulations. Considering the consuming time and computational stability, as well as the accuracy of the CFD calculation, the k–ε turbulence model was chosen for further calculations. The shaft power and the efficiency of the turbine were more close to the experimental data as the whole computational flow domain in the clearance between the volute and the impeller was connected on the impeller domain. Compared with the performance curves with or without grids in the boundary layer, the boundary layer with grids used in the PAT during numerical simulations was more close to the experimental one. Compared with the experimental data, the H-Q curves of the hydraulic performances of the turbine with forward-curved blades predicted by CFD were positioned under the experimental one. With respect to the efficiency of the turbine, the various ranges of the efficiency is less than 5%, even there is some deviations between the CFD and experimental results. Therefore, the good agreement of the hydraulic performances between CFD and experimental results in present study indicates that the proposed numerical methods can adequately capture the internal flow in a hydraulic turbine with forward-curved blades, and can also provide a reliable reference for the design of hydraulic turbines.


2014 ◽  
Vol 66 (2) ◽  
pp. 282-288 ◽  
Author(s):  
You-Qiang Wang ◽  
Xiu-Jiang Shi ◽  
Li-Jing Zhang

Purpose – Water-lubricated rubber bearing is one of the most appropriate bearings for underwater use. The most popular design used widely today is the straight fluted rubber bearing. The special configuration leads to partial hydrodynamic lubrication and low load capacity. A new bearing bush structure with two cavities which is favorable for constructing continuous hydrodynamic lubrication was designed and studied. The paper aims to discuss these issues. Design/methodology/approach – A new bearing bush structure with two cavities which is favorable for constructing continuous hydrodynamic lubrication was designed. The apparatus for studying the tribological behaviors of the two types of water-lubricated rubber bearings has been devised and established in the paper. The experimental studies on the tribological properties of the rubber bearings have been conducted under different loads and velocities. The eccentricity ratio of the new structure rubber bearing with two cavities was measured in experiment and the load capacity was calculated by numerical simulation. Findings – The experimental results show that the friction coefficient decreases with increasing velocity; the friction coefficient increases sharply with the rising temperature, the friction coefficient increases at first and then decreases with increasing load for fluted rubber bearings. The numerical results were in good agreement with the experimental results. The numerical results show that complete hydrodynamic lubrication can be formed in the new designed rubber bearing with two cavities. The experimental and numerical results all indicate that there is an appropriate bearing clearance which the friction coefficient is minimum and the load capacity is maximum. Originality/value – A new bearing bush structure with two cavities which is beneficial to constructing continuous hydrodynamic lubrication film was designed. A new apparatus for studying the tribological behaviors of the two types of water-lubricated rubber bearings has been devised and established. Experimental and numerical study on the new structure rubber bearing were conducted in the paper.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Wenguang Li

A series of experiments has been conducted to identify the effects of both fluid viscosity and wear-rings gap on the performance of a low specific speed industrial centrifugal pump of type 65Y60 for transporting viscous oils by the author group. Unfortunately, the experimental results remained unexplained on a fluid dynamics base. To remedy this problem, a highly viscous oil flow model and computational method in the side chambers in that pump were proposed based on the existing theoretical and experimental results. The flow coupling between the chambers and the gaps of the wear-rings and/or the balance holes was realized. The model was validated by making use of the existing experiment data in the chamber between a rotating disk and the walls of a stationary cylindrical container. Then the flow model was applied into the two side chambers in that pump when the wear-rings clearances and liquid viscosity were changed. The results demonstrated that the flow model is sensitive to wear-rings gap, liquid viscosity, the roughness of the wet walls of the chambers, and leakage flow rate. For this pump, an enlarged clearance can improve the mechanical efficiency, but the increment in the efficiency is unable to compensate for the considerable drop in the volumetric efficiency, causing the gross efficiency not be improved, especially at a high viscosity.


Volume 4 ◽  
2004 ◽  
Author(s):  
Th. Bichet ◽  
A. Martin ◽  
F. Beaud

Within the framework of the nuclear power plant lifetime issue, the assessment of the French 900 MWe (3-loops) series Reactor Pressure Vessel (RPV) integrity was performed. A simplified analysis has shown that one of the most severe loading condition is given by the small break loss of coolant accidents (SBLOCA) due to the pressurized injection of cold water (9°C) into the cold leg and down comer of the RPV. Two main physical phenomena, considered important for the RPV cooling transient, were identified during numerical application obtained with EDF CFD tools. These phenomena are the fluid flow separation and the plume oscillations in the down comer. In order to consolidate these numerical results with the EDF home code, called Code_Saturne, an experimental study has been carried out with the new EDF R&D facility. This transparent experimental model is based on the representation at 1/2 scale of a cold leg and a third of down comer including a thermal shield. The experiments were realized by injecting of salt water flow (density effects) in the cold leg according to a similitude study based on Froude number conservation between experiments and reactor scenarios. Firstly, this paper presents the main qualitative experimental results, based essentially on visualizations of different injections of dyed salt water in the cold leg and in the down comer. The physical phenomena observed showed a qualitative good agreement between visualizations and numerical results. Secondly, this paper presents the first experimental results of the assessment of the fluid flow separation in the experimental model obtained with temperature probes inserted in the down comer. We showed, in the experiments analysis, the fluid flow separation and the jet oscillations were detected. The next step will consist to compare these quantitative experiments with numerical study which will be carry out with Code_Saturne.


1999 ◽  
Vol 4 ◽  
pp. 31-86 ◽  
Author(s):  
R. Katilius ◽  
A. Matulionis ◽  
R. Raguotis ◽  
I. Matulionienė

The goal of the paper is to overview contemporary theoretical and experimental research of the microwave electric noise and fluctuations of hot carriers in semiconductors, revealing sensitivity of the noise spectra to non-linearity in the applied electric field strength and, especially, in the carrier density. During the last years, investigation of electronic noise and electron diffusion phenomena in doped semiconductors was in a rapid progress. By combining analytic and Monte Carlo methods as well as the available experimental results on noise, it became possible to obtain the electron diffusion coefficients in the range of electric fields where inter-electron collisions are important and Price’s relation is not necessarily valid. Correspondingly, a special attention to the role of inter-electron collisions and of the non-linearity in the carrier density while shaping electric noise and diffusion phenomena in the non-equilibrium states will be paid. The basic and up-to-date information will be presented on methods and advances in this contemporary field - the field in which methods of non-linear analytic and computational analysis are indispensable while seeking coherent understanding and interpretation of experimental results.


2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 871
Author(s):  
Cheng Luo ◽  
Manjarik Mrinal ◽  
Xiang Wang ◽  
Ye Hong

In this study, we explore the deformation of a polymer extrudate upon the deposition on a build platform, to determine the bonding widths between stacked strands in fused-filament fabrication. The considered polymer melt has an extremely high viscosity, which dominates in its deformation. Mainly considering the viscous effect, we derive analytical expressions of the flat width, compressed depth, bonding width and cross-sectional profile of the filament in four special cases, which have different combinations of extrusion speed, print speed and nozzle height. We further validate the derived relations, using our experimental results on acrylonitrile butadiene styrene (ABS), as well as existing experimental and numerical results on ABS and polylactic acid (PLA). Compared with existing theoretical and numerical results, our derived analytic relations are simple, which need less calculations. They can be used to quickly predict the geometries of the deposited strands, including the bonding widths.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


Sign in / Sign up

Export Citation Format

Share Document