scholarly journals Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Suhana Koting ◽  
Mohamed Rehan Karim ◽  
Hilmi Mahmud ◽  
Nuha S. Mashaan ◽  
Mohd Rasdan Ibrahim ◽  
...  

Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-samplet-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

2013 ◽  
Vol 357-360 ◽  
pp. 1200-1205
Author(s):  
Chun Hui Yu ◽  
Gu Hua Li ◽  
Jin Liang Gao ◽  
Qun Wei ◽  
Da Zhen Xu

Compared with natural sand, manufactured-sand is of small porosity, poor grain shape and graded, which impacts mixes workability and the properties after hardening. In Concrete, playing the role of retaining moisture water is mainly powder, including cement, powder in the sand and fly ash etc. The amount of powder has a great influence on the properties of concrete, especially on its workability. This paper mainly discusses the influence of amount of cement, cementitious materials, fly ash, water-cement ratio and other factors on the workability, compressive strength and shrinkage of concrete. The experiments show that, in the case of the low amount of cement, workability of the manufactured-sand concrete mixture, compressive strength and shrinkage deformation of test block all meet the actual requirements.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4583
Author(s):  
Martyna Nieświec ◽  
Łukasz Sadowski

Recently, the surfaces of concrete structures are impregnated to protect them against the environment in order to increase their durability. It is still not known how the use of these agents affects the near-surface hardness of concrete. This is especially important for experts who use the near-surface hardness of concrete for estimating its compressive strength. The impregnation agents are colorless and, thus, without knowledge of their use, mistakes can be made when testing the surface hardness of concrete. This paper presents the results of investigations concerning the impact of impregnation on the subsurface hardness concrete measured using a Schmidt hammer. For this research, samples of cement paste with a water–cement ratio of 0.4 and 0.5 were used. The samples were impregnated with one, two, and three layers of two different agents. The first agent has been made based on silanes and siloxanes and the second agent has been made based on based on polymers. The obtained research results allow for the conclusion that impregnation affects the near-surface hardness of concrete. This research highlights the fact that a lack of knowledge about the applied impregnation of concrete when testing its near-surface hardness, which is then translated into its compressive strength, can lead to serious mistakes.


2013 ◽  
Vol 734-737 ◽  
pp. 1077-1081 ◽  
Author(s):  
Jin Xia Zhang ◽  
Shu Xian Liu ◽  
Jun Xie

The tailings and slag based mine filling cementitious materials was prepared by sodium silicate and sodium hydroxide alkali-activated tailings and slag. Through the test that the cementing materials in the best ratio of raw materials: when slag and tailings admixture is 1.25, the content of NaOH was 50%, the amount of sodium hydroxide for 50%, water cement ratio of 0.22, under the condition of normal temperature curing 7 days, eventually making a compressive strength of 52.3MPa cementing materials.


2021 ◽  
pp. 11-16
Author(s):  
Mushtaque Ahmed Pathan ◽  
Maryam Maira ◽  
Arif Ali Khaskheli ◽  
Agha Jamshed Ahmed

This study shows the comparative analysis engineering, the physical and mechanical properties of river sand concrete with quarry dust concrete. The selected materials were batched by weight and volume. The water-cement ratio opted as 0.50 1:2:4 for mix ratio was selected for the experimental investigation respectively. The specimens were cured for 7, 14, 21, and 28 days. For the purpose Slump, density, and compressive strength tests were carried out. The river sand concrete showed better results and greater density and compressive strength than quarry dust concrete for all curing ages. The 28 days of curing, river sand concrete rise the required compressive strength by 36%, whereas quarry dust concrete was less than the limit compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio has been found suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite. Keywords: River Sand; Quarry Dust; Density; Compressive Strength; Concrete


2010 ◽  
Vol 168-170 ◽  
pp. 2116-2120
Author(s):  
Jian Chao Dou ◽  
Jian Sen Yang

The effect of water-cement ratio, air content, silica fume and sand ratio of concrete on the coefficient of linear expansion(CLE) was studied by orthogonal experiment. The results show that under a certain amount of cement material, CLE of concrete increase as the water-cement ratio increases and the effect of water-cement ratio on CLE of concrete is remarkable; with the increase of blending ratio of silica fume, the CLE of concrete increases; the CLE of concrete reduces with 3.5% air content in concrete, but rebound with 6% air content in concrete; with the sand rate increases, CLE of concrete increases; CLE per unit compressive strength of concrete with silica fume decreases with increase of silica fume content; CLE per unit compressive strength of concrete with air content increase when air content increase.


2012 ◽  
Vol 517 ◽  
pp. 338-341
Author(s):  
Ulisses Targino Bezerra ◽  
Normando Perazzo Barbosa

Papers presented at ICPIC 2010, Madeira Island, Portugal, dealing with the use of polymers in cementitious materials, show the need to combine different admixtures to optimize the properties of cement. This work is a continuation of a paper presented at NOCMAT 2010, Cairo-Egypt, about the incorporation of several materials in Portland cement to increase mechanical properties and workability. The best performance admixtures were chosen and they were combined considering the superposition of effects. Cement pastes were prepared with chalcedony and sulfonate (to increase compressive strength) and sugar (to increase workability). Two percent of cement was replaced by the admixtures. The water/cement ratio was constant and equal to 0.44. Results show that the combination of 0.05% of sugar and 1.95% of sulfonate and 0.10% of sugar and 1.90% of chalcedony produced a paste with the greatest compressive strength and good workability. Compression strength was respectively 27.4 MPa and 36.6 MPa, which represent increases of 33.5% and 78.6%, respectively, relative to the reference paste without admixtures. While increasing the paste compression strength with sulfonate has been significant, the results of the paste with chalcedony were the more surprising because the water/cement ratio of pastes was kept constant. The chalcedony is a type of crystalline silica, which shows deformation in their structure. So because of crystalline structure of chalcedony, there should be, probably, no significant reactivity of it with the cement hydrates, just the fact that its structure be deformed can explain this reactivity. The most important conclusion concerns is that the combinations of admixtures can improve a lot the properties of Portland cement paste.


2020 ◽  
Vol 4 (1) ◽  

This paper monitors the behaviour of compressive strength influenced by variation of water cement ratios and fly ash as partial replacement for cement. The study has express the pressure from this material from water cement ratios and fly ash on the designed mixed for high strength concrete, the study generated various compressive strength base on mixed proportions, this were applied to determine strength development at different mix proportion, such application generated compressive strength values numerically and analytically, this application was applied to compare the strength rate at every twenty four hours and that of seven days interval, the growth rate variation from the water cement ratios was applied to determine the mixed proportion to be applied that will always generate better strength, pending on the level of applied impose loads, furthermore, the study monitor increase rate of fly ash as partial replacement against the percentage dosage of fly ash content, these observed strength at optimum growth were recorded at 25%, variation increase on compressive strength from water cement ratios were between [0.23,0.40 and 0.50] it was observed that water cement ratio of [0.23] obtained the maximum strength compare to [0.40,and 0.50], the study applying modeling and simulation were subjected to model validation, and both parameters developed best fits correlations, the study has express various rate these material can develop strength applying modeling and simulation.


2013 ◽  
Vol 671-674 ◽  
pp. 1918-1922
Author(s):  
Yi Zhou Zhuang ◽  
Er Bu Tian ◽  
Yue Zong Lian

Generally the high density in high-strength concrete results in high strength, and so people often mix superplasticizer and particulate to increase the density of concrete, but ignoring the effect of coarse aggregate gradation on concrete strength. Referring to several Gradation Theories, this paper selects the coarse aggregate gradation with skeleton, uses uniform design method to test the compressive strength of high-strength concrete, and analyses the test results. It can be known from the test results of 7d and 28d concrete specimen that the concrete strength decreases linearly with water-cement ratio and sand ratio; The 7d’s concrete strength has higher variability due to low water-cement ratio with superplasticizer; The coarse aggregate skeleton is interfered by the increase of steel slag and sand rate, and the concrete strength decreases with limited cement paste. Furthermore, the steel slag with less than 30% addition has little effect on concrete strength and it can increase the cement’s possibility of contacting to water, and reduce the amount of cement without lowering the concrete strength. The influential degree on the compressive strength of concrete is followed by ascending sequence of steel slag content, sand ratio and water-cement.


2018 ◽  
Vol 13 (s1) ◽  
pp. 127-134
Author(s):  
Hyginus E. Opara ◽  
Uchechi G. Eziefula ◽  
Bennett I. Eziefula

Abstract This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


Sign in / Sign up

Export Citation Format

Share Document