scholarly journals Paeonol Attenuates Cigarette Smoke-Induced Lung Inflammation by Inhibiting ROS-Sensitive Inflammatory Signaling

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Meng-Han Liu ◽  
An-Hsuan Lin ◽  
Hung-Fu Lee ◽  
Hsin-Kuo Ko ◽  
Tzong-Shyuan Lee ◽  
...  

Cigarette smoking causes persistent lung inflammation that is mainly regulated by redox-sensitive pathways. We have previously reported that cigarette smoke (CS) activates reactive oxygen species- (ROS-) sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling leading to induction of lung inflammation. Paeonol, the main phenolic compound present in the Chinese herbPaeonia suffruticosa, has antioxidant and anti-inflammatory properties. However, whether paeonol has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we showed that chronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration, increased lung vascular permeability, elevated lung levels of chemokines, cytokines, and 4-hydroxynonenal (an oxidative stress biomarker), and induced lung inflammation; all of these CS-induced events were suppressed by chronic treatment with paeonol. Using human bronchial epithelial cells (HBECs), we demonstrated that cigarette smoke extract (CSE) sequentially increased extracellular and intracellular levels of ROS, activated the MAPKs/NF-κB signaling, and induced interleukin-8 (IL-8); all these CSE-induced events were inhibited by paeonol pretreatment. Our findings suggest a novel role for paeonol in alleviating the oxidative stress and lung inflammation induced by chronic CS exposurein vivoand in suppressing CSE-induced IL-8in vitrovia its antioxidant function and an inhibition of the MAPKs/NF-κB signaling.

2010 ◽  
Vol 299 (3) ◽  
pp. L425-L433 ◽  
Author(s):  
Chi Duong ◽  
Huei Jiunn Seow ◽  
Steven Bozinovski ◽  
Peter J. Crack ◽  
Gary P. Anderson ◽  
...  

Reactive oxygen species (ROS) produced from cigarette smoke cause oxidative lung damage including protein denaturation, lipid peroxidation, and DNA damage. Glutathione peroxidase-1 (gpx-1) is a detoxifying enzyme that may protect lungs from such damage. The aim of this study was to determine whether gpx-1 protects the lung against oxidative stress-induced lung inflammation in vivo. Male wild-type (WT) or gpx-1−/− mice were exposed to cigarette smoke generated from nine cigarettes per day for 4 days to induce oxidative stress and lung inflammation. The effect of the gpx mimetic ebselen on cigarette smoke-induced lung inflammation was evaluated when given prophylactically and therapeutically, i.e., during established inflammation. Mice were killed, and the lungs were lavaged with PBS and then harvested for genomic and proteomic analysis. Gpx-1−/− mice exposed to cigarette smoke had enhanced BALF neutrophils, macrophages, proteolytic burden, whole lung IL-17A, and MIP1α mRNA compared with WT mice. The gpx mimetic ebselen (10 and 100 μM) inhibited cigarette smoke extract-induced oxidation of MH-S cells in vitro and inhibited cigarette smoke-induced increases in BALF macrophages, neutrophils, proteolytic burden, and macrophage and neutrophil chemotactic factor gene expression when administered prophylactically. In addition, ebselen inhibited established BALF inflammation when administered therapeutically. These data show that gpx-1 protects against cigarette smoke-induced lung inflammation, and agents that mimic the actions of gpx-1 may have therapeutic utility in inflammatory lung diseases where cigarette smoke plays a role.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

2018 ◽  
Vol 17 (4) ◽  
pp. 1235-1246 ◽  
Author(s):  
Abdelnaser A. Badawy ◽  
Mohammed A. El-Magd ◽  
Sana A. AlSadrah

Background/Objectives: In the Middle East, people consume camel milk regularly as it is believed to improve immunity against diseases and decrease the risk for cancer. Recently, it was noted that most of the beneficial effects of milk come from their nanoparticles, especially exosomes. Herein, we evaluated the anticancer potential of camel milk and its exosomes on MCF7 breast cancer cells (in vitro and in vivo) and investigated the possible underlying molecular mechanism of action. Methods/Results: Administration of camel milk (orally) and its exosomes (orally and by local injection) decreased breast tumor progression as evident by ( a) higher apoptosis (indicated by higher DNA fragmentation, caspase-3 activity, Bax gene expression, and lower Bcl2 gene expression), ( b) remarkable inhibition of oxidative stress (decrease in MDA levels and iNOS gene expression); ( c) induction of antioxidant status (increased activities of SOD, CAT, and GPX), ( d) notable reduction in expression of inflammation-( IL1b, NFκB), angiogenesis-( VEGF) and metastasis-( MMP9, ICAM1) related genes; and ( e) higher immune response (high number of CD+4, CD+8, NK1.1 T cells in spleen). Conclusions: Overall, administration of camel milk–derived exosomes showed better anticancer effect, but less immune response, than treatment by camel milk. Moreover, local injection of exosomes led to better improvement than oral administration. These findings suggest that camel milk and its exosomes have anticancer effect possibly through induction of apoptosis and inhibition of oxidative stress, inflammation, angiogenesis and metastasis in the tumor microenvironment. Thus, camel milk and its exosomes could be used as an anticancer agent for cancer treatment.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1106
Author(s):  
Natasha Rios Leite ◽  
Laura Costa Alves de Araújo ◽  
Paola dos Santos da Rocha ◽  
Danielle Araujo Agarrayua ◽  
Daiana Silva Ávila ◽  
...  

Fruits are sources of bioactive compounds that are responsible for several biological activities. Therefore, this study aimed to identify the chemical composition of the pulp of the Brazilian Savanna fruit Dipteryx alata; evaluate its toxic effects, influence on the life expectancy of the nematode Caenorhabditis elegans, and its antioxidant activities in vitro and in vivo; and describe the mechanisms involved. The chemical compounds identified include phenols, terpenes, fatty acid derivatives, vitamins, and a carboxylic acid. The in vitro antioxidant activity was demonstrated by radical scavenging methods. in vivo, the D. alata fruit pulp was not toxic and promoted resistance to oxidative stress in nematodes exposed to a chemical oxidizing agent. Furthermore, it promoted an increased life expectancy in wild-type nematodes and increased the expression of superoxide dismutase and the nuclear translocation of DAF-16. These results suggest that the beneficial effects identified are related to these two genes, which are involved in the regulation of metabolic activities, the control of oxidative stress, and the lifespan of C. elegans. These beneficial effects, which may be related to its chemical constituents, demonstrate its potential use as a functional and/or nutraceutical food.


2019 ◽  
Vol 133 (13) ◽  
pp. 1523-1536 ◽  
Author(s):  
Xiao Sun ◽  
Xiuli Feng ◽  
Dandan Zheng ◽  
Ang Li ◽  
Chunyan Li ◽  
...  

Abstract Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). CS heightens inflammation, oxidative stress and apoptosis. Ergosterol is the main bioactive ingredient in Cordyceps sinensis (C. sinensis), a traditional medicinal herb for various diseases. The objective of this work was to investigate the effects of ergosterol on anti-inflammatory and antioxidative stress as well as anti-apoptosis in a cigarette smoke extract (CSE)-induced COPD model both in vitro and in vivo. Our results demonstrate that CSE induced inflammatory and oxidative stress and apoptosis with the involvement of the Bcl-2 family proteins via the nuclear factor kappa B (NF-κB)/p65 pathway in both 16HBE cells and Balb/c mice. CSE induced epithelial cell death and increased the expression of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), malondialdehyde (MAD) and the apoptosis-related proteins cleaved caspase 3/7/9 and cleaved-poly-(ADP)-ribose polymerase (PARP) both in vitro and in vivo, whereas decreased the levels of superoxide dismutase (SOD) and catalase (CAT). Treatment of 16HBE cells and Balb/c mice with ergosterol inhibited CSE-induced inflammatory and oxidative stress and apoptosis by inhibiting the activation of NF-κB/p65. Ergosterol suppressed apoptosis by inhibiting the expression of the apoptosis-related proteins both in vitro and in vivo. Moreover, the usage of QNZ (an inhibitor of NF-κB) also partly demonstrated that NF-κB/p65 pathway was involved in the ergosterol protective progress. These results show that ergosterol suppressed COPD inflammatory and oxidative stress and apoptosis through the NF-κB/p65 pathway, suggesting that ergosterol may be partially responsible for the therapeutic effects of cultured C. sinensis on COPD patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Zhai ◽  
Wei Xu ◽  
Yayun Liu ◽  
Kun Qian ◽  
Yanling Xiong ◽  
...  

Background. Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods. C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results. The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions. HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fujie Yan ◽  
Yushu Chen ◽  
Ramila Azat ◽  
Xiaodong Zheng

Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4704
Author(s):  
Pan Chen ◽  
Ziting Xiao ◽  
Hao Wu ◽  
Yonggang Wang ◽  
Weiyang Fan ◽  
...  

Naringenin is found mainly in citrus fruits, and is thought to be beneficial in the prevention and control of lung diseases. This study aims to investigate the mechanisms of naringenin against the damage in the lung caused by cigarette smoke. A system bioinformatic approach was proposed to predict the mechanisms of naringenin for protecting lung health. Then, we validated this prediction in BEAS-2B cells treated with cigarette smoke extract (CSE). System bioinformatic analysis indicated that naringenin exhibits protective effects on lung through the inhibition of inflammation and suppression of oxidative stress based on a multi-pathways network, mainly including oxidative stress pathway, Nrf2 pathway, Lung fibrosis pathway, IL-3 signaling pathway, and Aryl hydrocarbon receptor pathway. The in vitro results showed that naringenin significantly attenuated CSE-induced up-regulation of IL-8 and TNF-α. CSE stimulation increased the mRNA expressions of Nrf2, HO-1, and NQO1; the levels of total protein and nuclear protein of Nrf2; and the activity of SOD on days 2 and 4; but decreased these indexes on day 6. Naringenin can balance the antioxidant system by regulating Nrf2 and its downstream genes, preliminarily validating that Nrf2 pathway is involved in the protection offered by naringenin against cigarette smoke-induced damage to the lung. It suggests that dietary naringenin shows possible potential use in the management of lung health.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1064
Author(s):  
Alessandro G. Fois ◽  
Elisabetta Sotgiu ◽  
Valentina Scano ◽  
Silvia Negri ◽  
Sabrina Mellino ◽  
...  

Introduction: In vitro evidence suggests that pirfenidone and nintedanib, approved agents for the treatment of idiopathic pulmonary fibrosis (IPF), exert anti-inflammatory and anti-oxidant effects. We aimed to investigate such effects in vivo in IPF patients. Methods: Systemic circulating markers of oxidative stress [nuclear factor erythroid 2–related factor 2 (Nrf2), thiobarbituric acid- reactive substances (TBARS), homocysteine (Hcy), cysteine (Cys), asymmetric dimethylarginine (ADMA) and ADMA/Arginine ratio, glutathione (GSH), plasma protein –SH (PSH), and taurine (Tau)] and inflammation [Kynurenine (Kyn), Tryptophan (Trp) and Kyn/Trp ratio] were measured at baseline and after 24-week treatment in 18 IPF patients (10 treated with pirfenidone and 8 with nintedanib) and in 18 age- and sex-matched healthy controls. Results: Compared to controls, IPF patients had significantly lower concentrations of reduced blood GSH (457 ± 73 µmol/L vs 880 ± 212 µmol/L, p < 0.001) and plasma PSH (4.24 ± 0.95 µmol/g prot vs 5.28 ± 1.35 µmol/g prot, p = 0.012). Pirfenidone treatment significantly decreased the Kyn/Trp ratio (0.030 ± 0.011 baseline vs 0.025 ± 0.010 post-treatment, p = 0.048) whilst nintedanib treatment significantly increased blood GSH (486 ± 70 μmol/L vs 723 ± 194 μmol/L, p = 0.006) and reduced ADMA concentrations (0.501 ± 0.094 vs. 0.468 ± 0.071 μmol/L, p = 0.024). Conclusion: pirfenidone and nintedanib exert beneficial effects on specific markers of oxidative stress and inflammation in IPF patients.


Sign in / Sign up

Export Citation Format

Share Document