scholarly journals Uptake of Etoposide in CT-26 Cells of Colorectal Cancer Using Folate Targeted Dextran Stearate Polymeric Micelles

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Hojjat Sadeghi-Aliabadi ◽  
Farzin Firozian

Targeted drug delivery using folate receptors is one of the most interesting chemotherapeutic research areas over the past few years. A novel folate targeted copolymer was synthesized using dextran stearate coupled to folic acid. FT-IR and NMR spectroscopy were used to confirm successful conjugation. Micelles prepared using this copolymer were characterized for their particle size, zeta potential, critical micelle concentration (CMC), drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of the micelles were estimated using CT-26 colorectal carcinoma cell line. FT-IR and NMR spectroscopy confirmed production of folate grafted dextran stearate copolymer. Low CMC value indicates that the copolymers are suitable for preparation of stable micelles useful in parenteral dosage forms. Particle size and zeta potential of the targeted nanoparticles were105.5±2.0 nm and −21.2 mV, respectively. IC50of etoposide loaded in folate grafted dextran stearate enhanced about 20-fold compared to the pure drug (0.49±0.11 μg/mL versus9.41±0.52 μg/mL). It seems that etoposide loaded in micelles of folate grafted dextran stearate copolymer is promising in reducing drug resistance of colorectal cancer by boosting etoposide cellular uptake.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Hojjat Sadeghi ◽  
Farzin Firozian ◽  
Mina Mirian

Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC), drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.


Author(s):  
Suchetana Dutta ◽  
P. K. Kulkarni ◽  
Shailesh T.

The aim of the present work was to study the dissolution behaviour of a poorly water-soluble Olmesartan Medoxomil (class II drug), by forming polymeric micelles (PMs) of SoluPlus and Pluronic F127. Polymeric Micelles of SoluPlus and Pluronic F127 were prepared by the co-solvent evaporation method. Drug and excipient compatibility study were carried out by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry. The formulations were evaluated for particle size, Zeta Potential, Solubility studies, drug loading and encapsulation efficiency. Scanning Electron Microscopy (SEM) analysis was performed to study the surface morphology of the PMs. The SEM images showed spherical surface of the micelles. The drug loading efficiency was more for SoluPlus micelles compared to Pluronic F127 micelles. The Polymeric micelles showed negative zeta potential value indicating that they are stable and resist aggregation. The particle size was around 100nm and polydispersity index was less than 1 indicating uniform size distribution. The drug release from the SoluPlus micelles was higher than the Pluronic micelles. These results suggest that the polymeric micelles can be used to increase the solubility of poorly water-soluble drugs.


Author(s):  
Tibey Mary Koshy ◽  
Parthasarathi K Kulkarni

The aim of the work was to study the dissolution behaviour of the poorlywater-soluble drug mefenamic acid (MA), a NSAID, from polymeric micelles (PMs) of Pluronic F127 and DexbLG micelles.DexbLG Copolymer was synthesised by cross-linking reaction using Dextran and PLGA. Drug excipient compatibility study was carried out by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Pluronic F 127 and DexbLG Polymeric micelles formulation were prepared by co-solvent evaporation technique. Formulations were evaluated for particle size, Zeta potential, solubility studies, drug loading and encapsulation efficiency. Scanning electron microscopy (SEM) analysis was performed to study the size and surface morphology of the PMs. SEM image showed smooth surfaced spherical micelles. The drug loading efficiency was more inpluronic F 127 micelles. Polymeric micelles showed negative Zeta potential value indicating that they are stable and resist aggregation. Solubility of MA has increased to 6 - 13 folds from PMs of pluronic F127 and 4-11folds from DexbLG micelles. Particle size was less than 100 nm and polydispersity index was less than 0.5 indicating uniform size distribution. Percentage cumulative drug release from the Pluronic micelles was higher than DexbLG micelles. It can be concluded that MA PMs formulation has significantly increased the solubility and thereby increases the dissolution of the drug.These results suggest that polymeric micelles can be used to increase the solubility of poorly water-soluble drugs.  


Author(s):  
Kranti Singh ◽  
Surajpal Verma ◽  
Shyam Prasad ◽  
Indu Bala

Ciprofloxacin hydrochloride loaded Eudragit RS100 nanoparticles were prepared by using w/o/w emulsification (multiple emulsification) solvent evaporation followed by drying of nanoparticles at 50°C. The nanoparticles were further incorporated into the pH-triggered in situ gel forming system which was prepared using Carbopol 940 in combination with HPMC as viscosifying agent. The developed nanoparticles was evaluated for particle size, zeta potential value and loading efficiency; nanoparticle incorporated in situ gelling system was evaluated for pH, clarity, gelling strength, rheological studies, in-vitro release studies and ex-vivo precorneal permeation studies. The nanopaticle showed the mean particle size varying between 263.5nm - 325.9 nm with the mean zeta potential value of -5.91 mV to -8.13 mV and drug loading capacity varied individually between 72.50% to 98.70% w/w. The formulation was clear with no suspended particles, showed good gelling properties. The gelling was quick and remained for longer time period. The developed formulation was therapeutically efficacious, stable and non-irritant. It provided the sustained release of drug over a period of 8-10 hours.


Author(s):  
MAGFIRAH ◽  
INDAH KURNIA UTAMI

Objective: Parang romang (Boehmeria virgata) is one of the traditional medicines that are used empirically by Makassar tribal healers, South Sulawesi, as an antitumor drug. This traditional medicine contains secondary metabolites such as alkaloids, flavonoids, tannins, and saponins. However, secondary metabolites of those leaves extract have low solubility in water. Hence, to be formula, self-nanoemulsifying drug delivery system (SNEDDS) is one of the solutions to increase the extract solubility. Methods: The optimization of two formula optimum SNEDDS parang romang leaves (T80PGMZ and T20PGMZ) was using the simple lattice design (SLD) method which will give 28 SNEDDS formula parang romang leaves each of which the formula is tested for its characteristics as a critical point include emulsification time, % transmittance, drug loading, particle size, zeta potential, polydispersity index, and morphology particle. Results: The results of SNEDDS characterization obtained the optimum formula T80PGMZ with emulsification time 12.6 s, % transmittance 92.21%, drug loading 68.21 ppm, particle size 370.26 nm, zeta potential −31.4 mV, polydispersity index of 0.615, and regular particle morphology with spherical chunks at a magnification of 10,000 times with a particle size of 10 μm. Conclusion: SNEDDS of parang romang leaves extracts that used olive oil as oil phase, Tween 80 as a surfactant, and propylene glycol as the cosurfactant provided nanoemulsion with good characteristics.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
F. Piran ◽  
Z. Khoshkhoo ◽  
S. E. Hosseini ◽  
M. H. Azizi

Applying bioactive ingredients in the formulation of foods instead of artificial preservatives is problematic because bioactive ingredients are unstable and sensitive to environmental conditions. The present study aimed to control the antioxidant activity of green tea extract (GT) through encapsulating in chitosan nanoparticles (CS-NP). The synthesized nanoparticles were analyzed by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The encapsulation efficiency (EE), particle size, zeta potential, and polydispersity index (PDI) of GT-loaded CS-nanoparticles (CS-NP-GT) were assessed. Based on the results, the particle size and zeta potential related to the ratio of CS to GT of 1 : 0.5 were obtained as 135.43 ± 2.52 nm and 40.40 ± 0.2 mV, respectively. Furthermore, the results of FT-IR and XRD confirmed the validity of encapsulating GT in CS-NP. In addition, the antioxidant activity of GT increased after nanoencapsulation since the IC50 value of CS-NP-GT decreased to 6.13 ± 0.12 μg/ml. Finally, applying these particles for delivering GT polyphenols in foods is regarded as promising.


Author(s):  
MONOWAR HUSSAIN ◽  
ANUPAM SARMA ◽  
SHEIKH SOFIUR RAHMAN ◽  
ABDUL MATIN SIDDIQUE ◽  
TANUKU PAVANI EESWARI

Objective: Tuberculosis (TB) is an infectious bacterial disease caused by Mycobacterium tuberculosis which most commonly affects the lungs. TB has the highest mortality rate than any other infectious disease occurs worldwide. The main objective of the present investigation was to develop polymeric nanoparticles based drug delivery system to sustain the ethambutol (ETB) release by reducing the dose frequency. Methods: The Preformulation studies of drug ETB were done by physical characterization, melting point determination, and UV spectrophotometric analysis. The ETB loaded nanoparticles were prepared by double-emulsion (W/O/W) solvent evaporation/diffusion technique. The prepared polymeric nanoparticles were evaluated for particle size, polydispersity index, zeta potential, drug entrapment efficiency, drug loading, drug-polymer compatibility study, surface morphology, in vitro drug release, and release kinetics. Results: Based on the result obtained from the prepared formulations, F11 showed the best result and was selected as the optimized formulation. Optimized batch (F11) showed better entrapment efficiency (73.3%), good drug loading capacity (13.21%), optimum particle size (136.1 nm), and zeta potential (25.2 mV) with % cumulative drug release of 79.08% at the end of 24 h. Conclusion: These results attributed that developed polymeric nanoparticles could be effective in sustaining the ETB release over 24 h. Moreover, the developed nanoparticles could be an alternate method for ETB delivery with a prolonged drug release profile and a better therapeutic effect can be achieved for the treatment of tuberculosis.


Author(s):  
Sneha Dekate Shreeram Hirlekar ◽  
Srinivas Bhairy ◽  
Srinivas Bhairy ◽  
Rajashree Hirlekar ◽  
Rajashree Hirlekar

Objective: The principle objective of the present research work was to improve the bioavailability of curcumin (CUR) by decreasing its particle size. Nanosuspension (NS) of CUR was prepared using poloxamer-188 (P188) as a surfactant. The prepared NSs were characterized for particle size, polydispersity index (PDI), zeta potential, drug loading, saturation solubility, and drug release kinetic studies.Methods: Components required for NS preparation, such as solvent, anti-solvent and surfactant were screened. Precipitation high-speed homogenization (HSH) method was used for the preparation of NS using selected components. Evaluation of NS for particle size, PDI, drug loading, saturation solubility and in vitro drug release was done. Pharmacokinetic studies of the NS in sprague dawley (SD) rats were performed.Results: The particle size, PDI and zeta potential of the optimized formulation was 596.5±5 nm, 0.233±0.010 and-23±2 mV respectively. The pH of all the formulations was in the range of 5-6 which is acceptable when related to drug stability. The optimized formulation showed an increase in saturation solubility in water and phosphate buffer pH 6.8 when compared to plain CUR suspension (S). Results of pharmacokinetic studies indicated that Cmax and AUC0-6 were increased 8 and 10 times respectively from plain CUR S to CUR NS.Conclusion: CUR NS was prepared using P188 as the stabilizer. Amongst various stabilizers screened P188 rendered a stable NS with the particle size in nano range. Pharmacokinetic studies revealed the better performance of CUR NS as compared to plain CUR S.


2019 ◽  
Author(s):  
Malik Salman Haider ◽  
Michael M Lübtow ◽  
Sebastian Endres ◽  
Vladimir Aseyev ◽  
Ann-Christin Pöppler ◽  
...  

Polymeric micelles are typically characterized as core-shell structures. The hydrophobic inner core is considered as depot for hydrophobic molecules such as drugs or catalysts and the corona forming block acts as protective, stabilizing and solubilizing interface between the hydrophobic core and the external aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of the micelles, while the role of hydrophilic blocks regarding drug loading and stability of micelles is rarely studied in detail. To do so, we investigated a small library of structurally similar A-B-A type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (A) or poly(2-ethyl-2-oxazoline) (A*), both excellently water-soluble polymers that are able to provide beneficial stealth properties. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* highlight the impact of the hydrophilic corona of the polymer micelles on drug loading and stability. 1H-NMR spectroscopy revealed that the hydrophilic pEtOx exhibits a stronger interaction with the cargo compared with its more hydrophilic counterpart pMeOx, reducing colloidal stability of the drug loaded micelles at lower drug loading. To gain more insights, formulations were also characterized by diffusion ordered and nuclear Overhauser effect NMR spectroscopy, dynamic light scattering and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important but previously largely ignored factor for the rational design of polymeric micelles.<br>


2019 ◽  
Vol 9 (1) ◽  
pp. 190-194
Author(s):  
Rima Kassab ◽  
Dima Moussa ◽  
Cherine Saliba ◽  
Paolo Yammine

Non-aqueous oil-in-oil solvent evaporation technique is used for the preparation of polycaprolactone microspheres loaded with the antibiotic metronidazole by introducing different masses for the drug. The prepared microspheres are characterized by calculating drug encapsulation and drug loading percentages, measuring the corresponding particle size, performing FT-IR polymer-drug compatibility study and in vitro drug release. Moderate drug encapsulation values with a maximum of 34% are observed due to the low molecular weight of the drug. Microspheres had a particle size ranging between 130 and 280 µm with a spherical profile and porous structure. FT-IR study showed no interactions between the drug and the polymer. Drug release studies showed fast release rates for all the formulations with the slowest release for the highest drug loading. Keywords: polycaprolactone, metronidazole, targeted drug delivery, solvent evaporation.


Sign in / Sign up

Export Citation Format

Share Document