scholarly journals Analytical, FEA, and Experimental Comparisons of Piezoelectric Energy Harvesting Using Engine Vibrations

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Abhay Khalatkar ◽  
V. K. Gupta ◽  
Ankit Agrawal

Piezoelectric elements can be used as sensors and actuators in flexible structures. In this paper, using the most basic concepts of piezoelectric micropower generators, all useful mathematical equations for getting analytical output are discussed and derived for different piezo positions on cantilever beam and then 3D finite element modeling and simulation of generalized piezoelectric laminated beam problem with proper specifications and properties are done in ANSYS12.0. Experimental analysis is also done on the very practical problem to harvest energy (to get electric energy) by applying some deflection (mechanical energy) on piezo-bonded aluminum beam, that is, to harvest energy (at microlevel at least) by using vibrations of 4-stroke car diesel engine with mounting of piezo cantilever beam. Here piezoelectric beam is used to measure the charge generated from the engine vibrations. The vibration amplitudes are measured with a Laser Vibrometer with considerations of maximum number of power cycles is to be covered for analysis. The vibration response data of displacement of the cantilever at free end measured from Vibrometer are considered for harmonic and analytical analyses as mean displacement amplitude of 3.98 mm at free end. The study further carried out for effect of different piezo positions and various engine speeds also. Then comparison is also done among obtained results from these three analyses to get validation of all derived mathematical equations.

2011 ◽  
Vol 55-57 ◽  
pp. 498-503
Author(s):  
Bin Zheng ◽  
Liang Ping Luo

When designing implantable biomedical MEMS devices, we must provide electric power source with long life and small size to drive the sensors and actuators work. Obviously, traditional battery is not a good choice because of its large size, limited lifetime and finite power storage. Living creatures all have non-electric energy sources, like mechanical energy from heart beat and pulse. Piezoelectric structure can convert mechanical energy to electric energy. In the same design condition, the more electric energy is generated, the better the piezoelectric structure design. This paper discusses the topology optimization method for the most efficient implantable piezoelectric energy harvesting device. Finally, a design example based on the proposed method is given and the result is discussed.


Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


2017 ◽  
Vol 32 (3) ◽  
pp. 248
Author(s):  
Marcelo Lampkowski ◽  
Odivaldo José Seraphim ◽  
Anselmo José Spadotto

Empreendimentos baseados em tecnologias de energia solar concentrada (Concentrated Solar Power - CSP), também chamada de solar-térmica ou heliotérmica, fazem uso de sistemas de concentração da radiação solar para obtenção de quantidades significativas de fluido a altas temperaturas para aplicação em ciclos térmicos de potência. Em usinas CSP, o calor do sol é captado e armazenado para, depois, ser transformado em energia mecânica e, por fim, em eletricidade. O calor recolhido aquece um líquido (fluido térmico) que passa por um receptor. Esse líquido armazena o calor e serve para aquecer a água dentro da usina e gerar vapor. A partir daí, o vapor gerado movimenta uma turbina e aciona um gerador, produzindo, assim, energia elétrica. No Brasil, apesar do alto índice de radiação solar direta incidente, ainda são escassos os projetos envolvendo a energia heliotérmica e acredita-se que alguns dos fatores que dificultam a adoção e a implementação destas tecnologias no país estão relacionados à complexidade do processo de licenciamento ambiental para construção e operação de usinas CSP e à ausência de uma legislação ambiental específica para empreendimentos baseados na heliotermia. Este artigo se propôs a apresentar os principais aspectos da legislação existente em relação à impactos ambientais e aos processos para a obtenção das licenças ambientais, relacionando-os com as características de usinas CSP. Com base na análise dos requisitos para os procedimentos de licenciamento levantados, foram desenvolvidas propostas para o estabelecimento de diretrizes de licenciamento que são essenciais para o desenvolvimento do mercado CSP no Brasil.PALAVRAS-CHAVE: Energias renováveis, energia solar concentrada, legislação vigente. THE CONCENTRATED SOLAR POWER (CSP) ENVIRONMENTAL LICENSING PROCESS: CONSIDERATIONS ABOUT ITS SIMPLIFICATIONABSTRACT: Plants based on Concentrated Solar Power (CSP) technologies, also called solar-thermal or heliothermal, make use of solar radiation concentration systems to obtain significant quantities of fluid at high temperatures for application in thermal power cycles. The sunlight is captured and stored. Then it is converted into mechanical energy and finally into electricity. The collected heat heats up a liquid (thermal fluid) that passes through a receiver. This liquid stores the heat and serves to heat the water inside the plant and generate steam. From there, the steam moves a turbine and drives a generator, thus producing electric energy. In Brazil, despite the high incidence of direct solar radiation, projects involving heliothermic energy are still scarce and it is believed that some of the factors that hinder the adoption and implementation of these technologies Brazil are related to the complexity of the environmental licensing process for construction and operation of CSP plants and also the absence of a specific environmental legislation for CSP projects. This paper proposes to present the main aspects of the existing legislation in relation to the environmental impacts and the processes to obtain the environmental licenses, relating them to the characteristics of CSP plants. Based on the analysis of the requirements for the licensing procedures raised, proposals were developed for the establishment of licensing guidelines that are essential for the development of the Brazilian CSP market.KEYWORDS: Renewable energies, concentrated solar power, current legislation


2018 ◽  
pp. 826-862
Author(s):  
Abdessattar Abdelkefi

There exist numerous low-frequency excitation sources, such as walking, breathing, and ocean waves, capable of providing viable amounts of mechanical energy to power many critical devices, including pacemakers, cell phones, MEMS devices, wireless sensors, and actuators. Harvesting significant energy levels from such sources can only be achieved through the design of devices capable of performing effective energy transfer mechanisms over low frequencies. In this chapter, two concepts of efficient low-frequency piezoelectric energy harvesters are presented, namely, variable-shaped piezoelectric energy harvesters and piezomagnetoelastic energy harvesters. Linear and nonlinear electromechanical models are developed and validated in this chapter. The results show that the quadratic shape can yield up to two times the energy harvested by a rectangular one. It is also demonstrated that depending on the available excitation frequency, an enhanced energy harvester can be tuned and optimized by changing the length of the piezoelectric material or by changing the distance between the two tip magnets.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Ehsan Omidi ◽  
S. Nima Mahmoodi

This paper develops H2 modified positive position feedback (H2-MPPF) and H∞-MPPF controllers for spatial vibration suppression of flexible structures in multimode condition. Resonant vibrations in a clamped–clamped (c–c) and a cantilever beam are aimed to be spatially suppressed using minimum number of piezoelectric patches. These two types of beams are selected since they are more frequently used in macro- and microscale structures. The shape functions of the beams are extracted using the assumed-modes approach. Then, they are implemented in the controller design via spatial H2 and H∞ norms. The controllers are then evaluated experimentally. Vibrations of multiple points on the beams are concurrently measured using a laser vibrometer. According to the results of the c–c beam, vibration amplitude is reduced to less than half for the entire beam using both H2- and H∞-MPPF controllers. For the cantilever beam, vibration amplitude is suppressed to a higher level using the H2-MPPF controller compared to the H∞-MPPF method. Results show that the designed controllers can effectively use one piezoelectric actuator to efficiently perform spatial vibration control on the entire length of the beams with different boundary conditions.


Author(s):  
Abdessattar Abdelkefi

There exist numerous low-frequency excitation sources, such as walking, breathing, and ocean waves, capable of providing viable amounts of mechanical energy to power many critical devices, including pacemakers, cell phones, MEMS devices, wireless sensors, and actuators. Harvesting significant energy levels from such sources can only be achieved through the design of devices capable of performing effective energy transfer mechanisms over low frequencies. In this chapter, two concepts of efficient low-frequency piezoelectric energy harvesters are presented, namely, variable-shaped piezoelectric energy harvesters and piezomagnetoelastic energy harvesters. Linear and nonlinear electromechanical models are developed and validated in this chapter. The results show that the quadratic shape can yield up to two times the energy harvested by a rectangular one. It is also demonstrated that depending on the available excitation frequency, an enhanced energy harvester can be tuned and optimized by changing the length of the piezoelectric material or by changing the distance between the two tip magnets.


2015 ◽  
Vol 645-646 ◽  
pp. 1189-1194
Author(s):  
Hai Peng Liu ◽  
Shi Qiao Gao ◽  
Lei Jin

Harvesting ambient vibration energy through piezoelectric (PE) means is a popular energy harvesting technique. The merit of applying PE means to supply energy for microelectronic devices is that they can reduce the battery weight and possibly make the device self-powered by harvesting mechanical energy. This investigation will examine the energy generating performance of miniature PE cantilever beam through theoretical modeling, simulation and experiment testing. Through the theoretical analysis of the piezoelectric energy harvesting structure, the expression of open circuit voltage output is obtained. Using ANSYS software, the working performance of piezoelectric cantilever beam is analyzed. On the basis of theoretical analysis and simulation optimization, a set of experimental system is established to test the energy harvesting performance of the piezoelectric cantilever beam. The testing result shows that the harvested energy by the piezoelectric cantilever beam could supply electrical power to some micro electrical devices.


2016 ◽  
Vol 248 ◽  
pp. 249-255
Author(s):  
Radosław Nowak ◽  
Marek Pietrzakowski

Machines, cars suspensions, buildings steel constructions etc. usually generate vibrations, which can be the excitement signal for piezoelectric energy harvesters. The piezoelectric patches attached to the vibrating construction have ability to convert mechanical energy of harmful vibrations into electrical energy.The goal of the study was to verify a finite element model of the piezoelectric beam energy harvester by comparing results of numerical simulations with those obtained experimentally. The stand used in the experiment consists of the cantilever beam with piezoelectric elements attached, which is excited by the base harmonic movement. The transverse displacements of the selected beam’s point and the base, and also the frequency of vibrations were observed and measured using an accelerometer and a B&K Pulse platform. A portable data acquisition module was used to quantify the voltage generated by the piezoelectric layers.The finite element model was built in ANSYS software. The beam and piezoelectric layers were modeled by twenty node elements with an additional electric degree of freedom for piezoelectric elements. A full piezoelectric matrix was used in the finite element analysis instead of a one-dimensional piezoelectric effect, which dominates in many analytical approaches. It allowed building a more accurate model of the system. The experimental tests and finite element method simulations were performed and acquired results were compared. The characteristics of voltage amplitude in the time and frequency domain were shown and discussed.


2017 ◽  
Vol 28 (12) ◽  
pp. 1682-1696 ◽  
Author(s):  
Linjuan Yan ◽  
Adrien Badel ◽  
Fabien Formosa ◽  
Laurent Petit

A piezoelectric vibration energy harvester aiming at collecting energy from the operation of an electromagnetic digital actuator is presented. It is based on the frequency up-conversion and can simultaneously obtain the information of discrete position location. The objective is an improved reliability of such digital actuators ensuring sample controls of the actuator positions. The considered electromagnetic digital actuator is capable of achieving two-dimensional in-plane movements by switching a mobile permanent magnet among four discrete positions. The demonstration of a first step toward integrated additional autonomous functions scavenging a part of the mechanical energy of the mobile permanent magnet is achieved. The vibration energy harvester consists of a piezoelectric cantilever beam magnetically attached to the mobile permanent magnet. The limited magnetic interaction force allows a frequency up-conversion strategy to be set. The frequency up-conversion technique that is used here consists of a “low frequency” excitation that drives a much higher natural frequency oscillator. Indeed, once the energy harvester separates from the mobile permanent magnet, a free oscillation occurs and the induced mechanical energy is harvested. This design concept is numerically analyzed and experimentally validated. Harvested energy of 4.7 µJ is obtained from preliminary experiments using a simple out-of-plane cantilever beam with 9 N/m stiffness and 16 mN magnetic attraction between the vibration energy harvester and the mobile permanent magnet when they contact each other. This energy is in accordance with the requirements for wireless communication of simple information. Finally, an L-shaped cantilever beam optimized design is proposed for future in-plane integration.


Author(s):  
L. Loureiro Silva ◽  
P. C. C. Monteiro ◽  
Marcelo A. Savi ◽  
Theodoro A. Netto

Monitoring and control of subsea systems in remote ultra deep water scenarios is challenging as well as an opportunity for development and application of new technologies. One of the major problems is providing continuous power to sensors and actuators, independent of electrical umbilical cables. A conventional solution is the use of electrochemical batteries. However, problems can occur using batteries due to their finite lifespan. The need for constant replacement in remote locations can become a very expensive task or even impossible. Piezoelectric energy harvesters have received great attention for vibration-to-electric energy conversion over the last years. The evaluation of the power output of devices for different excitation frequency and amplitude of vibration has an important role in the design of such devices. This work describes the methodology to design a prototype that can be used in a pipe subjected to flow induced vibrations. Numerical model has been developed to reproduce the electromechanical coupling mechanism aiming at estimating the output voltage of the piezoelectric harvester. The results show the potential of piezoelectric materials for this application.


Sign in / Sign up

Export Citation Format

Share Document