scholarly journals Miniaturized Bandpass Filter Using a Meandered Stepped-Impedance Resonator with a Meandered-Line Stub-Load on a GaAs Substrate

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Z. Chuluunbaatar ◽  
C. Wang ◽  
N. Y. Kim

This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

2018 ◽  
Vol 4 ◽  
pp. 119-124
Author(s):  
Ram Krishna Maharjan

This research focuses a new microstrip twin-interdigital type bandpass filter based on stepped impedance resonator (SIR) structure. The proposed structure consists of two slightly different interdigital capacitances within a single SIR resonator that behaves as a bandpass filter (BPF) of center frequency 4.3 GHz with 700 MHz bandwidth at 3 dB pass band. This design is not only subjected to size reduction, but also low pass-band insertion loss and high return loss as well. The Sonnet software tool has been used to design and simulate the microstrip BPF. The fabricated BPF was measured using the Agilent 8510C vector network analyzer (VNA) and achieved the insertion loss of 0.5 dB and the return loss of 26 dB. The measured results were compared with those simulated results which were very close to each other. The fabricated BPF can be used for Cband Applications.


This paper presents design and analytical model for Sharp Skirt Dual-Mode Bandpass Filter for RF receivers. Proposed filter is designed using open stub loaded H shaped resonator. Based on analytical model insertion loss S21 and return loss S11 for proposed filter are demonstrated. Inductive Overlaying plate is proposed to control upper passband edge of proposed filter to improve frequency selectivity with fixed center frequency. The proposed filter has sharp frequency selective range from 5.1GHz to 9.2GHz. With overlay plate, frequency selective range is tuned to 5.1GHz-8.6GHz. Without overlaying plate the proposed filter has return loss greater than 10dB and insertion loss of 0.7dB. Lower and upper passband edges are at 5.1GHz and 9.2GHz with attenuation level of 52dB and 54dB respectively. With overlaying plate, the filter has same S 11 and S 21 parameters, but upper passband edge is shifted from 9.2GHz to 8.6GHz


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 195 ◽  
Author(s):  
Ki-Hun Lee ◽  
Eun-Seong Kim ◽  
Jun-Ge Liang ◽  
Nam-Young Kim

In this study, the proposed bandpass filter (BPF) connects an interdigital and a spiral capacitor in series between the two symmetrical halves of a circular intertwined spiral inductor. For the mass production of devices and to achieve a higher accuracy and a better performance compared with other passive technologies, we used integrated passive device (IPD) technology. IPD has been widely used to realize compact BPFs and achieve the abovementioned. The center frequency of the proposed BPF is 1.96 GHz, and the return loss, insertion loss and transmission zero are 26.77 dB, 0.27 dB and 38.12 dB, respectively. The overall dimensions of BPFs manufactured using IPD technology are 984 × 800 μ m 2 , which is advantageous for miniaturization and integration.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1932
Author(s):  
Jian Chen ◽  
Zhi-Ji Wang ◽  
Bao-Hua Zhu ◽  
Eun-Seong Kim ◽  
Nam-Young Kim

This article presents a compact quad flat no-lead (QFN)-packaged second-order bandpass filter (BPF) with intertwined inductors, a dendritic capacitor, and four air-bridge structures, which was fabricated on a gallium arsenide (GaAs) substrate by integrated passive device (IPD) technology. Air-bridge structures were introduced into an approximate octagonal outer metal track to provide a miniaturized chip size of 0.021 × 0.021 λ0 (0.8 × 0.8 mm2) for the BPF. The QFN-packaged GaAs-based bandpass filter was used to protect the device from moisture and achieve good thermal and electrical performances. An equivalent circuit was modeled to analyze the BPF. A description of the manufacturing process is presented to elucidate the physical structure of the IPD-based BPF. Measurements were performed on the proposed single band BPF using a center frequency of 2.21 GHz (return loss of 26.45 dB) and a 3-dB fractional bandwidth (FBW) of 71.94% (insertion loss of 0.38 dB). The transmission zero is located at the 6.38 GHz with a restraint of 30.55 dB. The manufactured IPD-based BPF can play an excellent role in various S-band applications, such as a repeater, satellite communication, and radar, owing to its miniaturized chip size and high performance.


2016 ◽  
Vol 16 (1) ◽  
pp. 11
Author(s):  
Arief Budi Santiko ◽  
Yahya Syukri Amrullah ◽  
Yuyu Wahyu ◽  
Muhammad Ilham Maulana ◽  
Bambang Setia

In this paper, the design of microstrip BPF (Bandpass Filter) for WiMAX (Worldwide Interoperability for Microwave Access) application has been presented. The frequency band allocations for BWA (Broadband Wireless Access) in Indonesia are 2.3; 3.3 and 5.8 GHz. This microtrip BPF is designed using parallel coupled line in compact form and it has spesific parameter, i.e. 3.35 GHz center frequency, 400 MHz bandwidth, VSWR ≤ 2, -3 dB insertion loss and matching impedance between two port is 50 Ω. The Advanced Design System (ADS) software has been used during simulation and optimization. The simulation results show that return loss S11 and insertion loss S21 are -15.31 dB and -2.2 dB at 3.35 GHz respectively. For the design verification, the prototype of the proposed design wasfabricated and measured.The results of the fabrication approach of simulation results, which have return loss value S11and insertion loss S21 of the proposed microstrip filter are -18.20 dB and -2.91 dB at 3.35 GHz respectively. The result shows that the proposed design can be implemented forWiMAX communication system applications


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Min-Hang Weng ◽  
Chin-Yi Tsai ◽  
De-Li Chen ◽  
Yi-Chun Chung ◽  
Ru-Yuan Yang

This paper presents a miniaturized bandpass filter, which uses half mode substrate integrated waveguide (HMSIW) structure with embedded step impedance structure (SIS). By embedding the stepped impedance structure into the top metal of the waveguide cavity, the center frequency can be quickly shifted to a lower frequency. The operating center frequency of the proposed bandpass filter (BPF) using HMSIW resonators with embedded SIS is tunable as functions of the parameters of the SIS. The design curve is provided. A filter example of the center frequency of the filter at 3.5 GHz is fabricated and measured, having the insertion loss |S21| less than 3 dB, and the return loss |S11| greater than 10 dB. The transmission zeros are located at 2.95 GHz and 3.95 GHz on both sides of the passband, both of which are lower than 30 dB. The simulation result and the measured response conform to the proposed design concept. The proposed HMSIW filter design is in line with the current 5G communication trend.


2019 ◽  
Vol 14 (4) ◽  
pp. 448-455 ◽  
Author(s):  
Nanang Ismail ◽  
Teddy Surya Gunawan ◽  
Santi Kartika S ◽  
Teguh Praludi ◽  
Eki A.Z. Hamidi

Radar has been widely used in many fields, such as telecommunication, military applications, and navigation. The filter is one of the most important parts of a radar system, in which it selects the necessary frequency and blocks others. This paper presents a novel yet simple filter design for S-band radar in the frequency range of 2.9 to 3.1 GHz. The center frequency of the filter was designed at 3 GHz with a bandwidth of 200 MHz, insertion loss larger than -3 dB and return loss less than -20 dB. Fifth order microstrip hairpin bandpass filter (BPF) was designed and implemented on Rogers 4350B substrate which has a dielectric relative constant value of (εr)= 3.48 and substrate thickness of (h) =1.524 mm. One element of the square groove was added as Defected Ground Structure (DGS) which can decrease the filter size, reduce harmonization, and increase return loss. Two scenarios were used in the measurement, i.e. with and without enclosed aluminum casing. Results showed that BPF without casing obtained the insertion loss of -1.748 dB at 2.785 GHz and return loss of -21.257 dB in the frequency range between 2.785 to 2.932 GHz. On the other hand, BPF with casing shows a better performance, in which it obtained the insertion loss of -1.643 dB at 2.921 GHz and return loss of -19.529 in the frequency range between 2.820 to 3.021 GHz. Although there is small displacement of frequency and response value between the simulation and implementation, our BPF has the ability to work on S-band radar with a frequency range of 2 to 4 GHz. 


2018 ◽  
Vol 10 (4) ◽  
pp. 405-411 ◽  
Author(s):  
Salif N. Dembele ◽  
Ting Zhang ◽  
Jingfu Bao ◽  
Denis Bukuru

AbstractA dual closed-loop stepped impedance resonator (DCLSIR) is investigated and used in designing a compact microstrip bandpass filter (BPF). The proposed DCLSIR is symmetrical; as a result, the symmetric characteristics of the resonator have been used. The design equations are derived and used to support the circuit design. The center frequency, position of transmission zeros, and fractional bandwidth (FBW) are easily tuned by changing the physical dimensions of the resonator. Three transmission zeros are generated to improve the performance in the upper stopband. A DCLSIR prototype BPF is fabricated with a center frequency of 9.3 GHz, and evaluated to validate the design concept. The measured FBW is 9.25%, the insertion loss is 1.58 dB, and the return loss is over 17 dB. The measurement results agree well with the simulation results.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 73 ◽  
Author(s):  
Chun-He Quan ◽  
Zhi-Ji Wang ◽  
Jong-Chul Lee ◽  
Eun-Seong Kim ◽  
Nam-Young Kim

As one of the most commonly used devices in microwave systems, bandpass filters (BPFs) directly affect the performance of these systems. Among the processes for manufacturing filters, integrated passive device (IPD) technology provides high practicality and accuracy. Thus, to comply with latest development trends, a resonator-based bandpass filter with a high selectivity and a compact size, fabricated on a gallium arsenide (GaAs) substrate is developed. An embedded capacitor is connected between the ends of two divisions in a circular spiral inductor, which is intertwined to reduce its size to 0.024 λg × 0.013 λg with minimal loss, and along with the capacitor, it generates a center frequency of 1.35 GHz. The strong coupling between the two ports of the filter results in high selectivity, to reduce noise interference. The insertion loss and return loss are 0.26 dB and 25.6 dB, respectively, thus facilitating accurate signal propagation. The filter was tested to verify its high performance in several aspects, and measurement results showed good agreement with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document