scholarly journals An Investigation into the Impact of Reaction Temperature on Various Parameters during Torrefaction of Sugarcane Bagasse Relevant to Gasification

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Anthony Anukam ◽  
Sampson Mamphweli ◽  
Prashant Reddy ◽  
Omobola Okoh ◽  
Edson Meyer

Torrefaction of sugarcane bagasse was conducted in an electric muffle furnace at 200, 250, and 300°C in order to establish the impact of heat treatment temperature on various parameters and as a method to improve sugarcane bagasse characteristics for the purpose of gasification. The results show that weight loss of bagasse reduced as temperature of torrefaction increased due to excessive devolatilization. A reduced moisture and volatile matter content as well as improved calorific value were also achieved with increasing temperature of torrefaction. The torrefaction progress was again followed by elemental analysis of the material which showed the presence of C, H, and O in varying proportions depending on torrefaction temperature. The decrease in the weight percentages of O2and H2as torrefaction reaction temperature increased resulted in the accumulation of C in the solid product. The thermogravimetric analysis conducted established the maximum reactivity temperature of the torrefied material and revealed that the degradation of torrefied sugarcane bagasse was accelerated by thermal treatment of the material prior to analysis. Finally, the study established that torrefaction at 300°C led to a much more degraded material compared to the lower torrefaction reaction temperatures of 200 and 250°C, respectively.

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2249-2263
Author(s):  
María Alejandra Ramírez-Ramírez ◽  
Artemio Carrillo-Parra ◽  
Faustino Ruíz-Aquino ◽  
Luis Fernando Pintor-Ibarra ◽  
Nicolás González-Ortega ◽  
...  

This research characterized briquettes made with Pinus spp. sawdust without the use of additives. For this purpose, 19 samples of sawdust from different wood industries located in five states of the Mexican Republic were used. The densification process was carried out in a vertical hydraulic piston laboratory briquette machine. The briquettes were made with 40 g of sawdust, at 50 °C, 20 kPa and pressing for 5 min. The results obtained varied as follows: moisture content (4.1% to 7.2%), density (813.9 to 1,014.4 kg/m3), volumetric expansion (7.4% to 37.3%), compressive strength (4.9 to 40.8 N/mm), impact resistance index (46.7% to 200%), ash (0.1% to 1.1%), volatile matter (82.9% to 90.7%), fixed carbon (8.9% to 16.4%), and calorific value (20.5 to 22.8 MJ/kg). The density of the briquettes was within the “acceptable” classification (800 to 1,200 kg/m3). It was observed that, the higher the density, the lower the volumetric expansion, the higher the compressive strength, and the higher the impact resistance index. According to the ash content, the briquettes could achieve international quality. Due to high volatile matter values, rapid combustion of the briquettes with little generation of toxic smoke would be expected. Fixed carbon and calorific value results were acceptable.


Author(s):  
Yusraida Khairani Dalimunthe ◽  
Sugiatmo Kasmungin ◽  
Listiana Satiawati ◽  
Thariq Madani ◽  
Teuku Ananda Rizky

The purpose of this study was to see the best quality of briquettes from the main ingredient of coconut shell waste<br />with various biomass additives to see the calorific value, moisture content, ash content, and volatile matter<br />content of the biomass mixture. Furthermore, further research will be carried out specifically to see the quality of<br />briquettes from a mixture of coconut shell waste and sawdust. The method used in this research is to conduct a<br />literature study of various literature related to briquettes from coconut shell waste mixed with various additives<br />specifically and then look at the best quality briquettes produced from these various pieces of literature. As for<br />what is determined as the control variable of this study is coconut shell waste and as an independent variable,<br />namely coffee skin waste, rice husks, water hyacinth, Bintaro fruit, segon wood sawdust, coconut husk, durian<br />skin, bamboo charcoal, areca nut skin, and leather waste. sago with a certain composition. Furthermore, this<br />paper also describes the stages of making briquettes from coconut shell waste and sawdust for further testing of<br />the calorific value, moisture content, ash content, volatile matter content on a laboratory scale for further<br />research. From various literatures, it was found that the highest calorific value was obtained from a mixture of<br />coconut shell waste and bamboo charcoal with a value of 7110.7288 cal / gr and the lowest calorific value was<br />obtained from a mixture of coconut shell waste and sago shell waste with a value of 114 cal / gr, then for the value<br />The highest water content was obtained from a mixture of coconut shell waste and rice husk with a value of<br />37.70% and the lowest water content value was obtained from a mixture of coconut shell waste 3.80%, then for the<br />highest ash content value was obtained from a mixture of coconut shell waste and coffee skin with a value of<br />20.862% and for the lowest ash content value obtained from a mixture of coconut shell and Bintaro fruit waste,<br />namely 2%, and for the highest volatile matter content value obtained from a mixture of coconut shell and coconut<br />husk waste with a value of 33.45% and for the value of volatile matter levels The lowest was obtained from a<br />mixture of coconut shell waste and sago skin waste with a value of 33 , 45%.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 444 ◽  
Author(s):  
Samuel Carrasco ◽  
Javier Silva ◽  
Ernesto Pino-Cortés ◽  
Jaime Gómez ◽  
Fidel Vallejo ◽  
...  

The effect of magnesium chloride as an additive of hydrothermal carbonization (HTC) of lignocellulosic biomass (Pinus radiata sawdust) was studied. The HTC tests were carried out at fixed conditions of temperature and residence time of 220 °C and 1 h, respectively, and varying the dose of magnesium chloride in the range 0.0–1.0 g MgCl2/g biomass. The carbonized product (hydrochar) was tested in order to determine its calorific value (HHV) while using PARR 6100 calorimeter, mass yield by gravimetry, elemental analysis using a LECO TruSpec elemental analyzer, volatile matter content, and ash content were obtained by standardized procedures using suitable ovens for it. The results show that using a dose of 0.75 g MgCl2/g biomass results in an impact on the mass yield that was almost equal to change operating conditions from 220 to 270 °C and from 0.5 to 1 h, without additive. Likewise, the calorific value increases by 33% for this additive dose, resulting in an energy yield of 68%, thus generating a solid fuel of prominent characteristics.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1752
Author(s):  
Asmaa A. El-Tawil ◽  
Bo Björkman ◽  
Maria Lundgren ◽  
Astrid Robles ◽  
Lena Sundqvist Ökvist

Coke corresponds to 2/3–3/4 of the reducing agents in BF, and by the partial replacement of coking coals with 5–10% of bio-coal, the fossil CO2 emissions from the BF can be lowered by ~4–8%. Coking coal blends with 5% and 10% additions of bio-coals (pre-treated biomass) of different origins and pre-treatment degrees were carbonized at laboratory scale and with a 5% bio-coal addition at technical scale, aiming to understand the impact on the bio-coal properties (ash amount and composition, volatile matter content) and the addition of bio-coke reactivity. A thermogravimetric analyzer (TGA) connected to a quadrupole mass spectroscope monitored the residual mass and off-gases during carbonization. To explore the effect of bio-coal addition on plasticity, optical dilatometer tests were conducted for coking coal blends with 5% and 10% bio-coal addition. The plasticity was lowered with increasing bio-coal addition, but pyrolyzed biomass had a less negative effect on the plasticity compared to torrefied biomasses with a high content of oxygen. The temperature for starting the gasification of coke was in general lowered to a greater extent for bio-cokes produced from coking coal blends containing bio-coals with higher contents of catalyzing oxides. There was no significant difference in the properties of laboratory and technical scale produced coke, in terms of reactivity as measured by TGA. Bio-coke produced with 5% of high temperature torrefied pelletized biomass showed a similar coke strength as reference coke after reaction.


2015 ◽  
Vol 4 (2) ◽  
pp. 46-52
Author(s):  
Erwin Junary ◽  
Julham Prasetya Pane ◽  
Netti Herlina

The availability of the petroleum fuels that deprived from fossil is depleted with the increase of human population. The challenge for this fuel shortage crisis can certainly be anticipated with the manufacture of fuels deprived from renewable biomass. The study of this research is to create a biocharcoal deprived from sugar palm (Arenga pinnata) with the optimum carbonization time and temperature in order to obtain a biocharcoal with the highest calorific value. Biocharcoal is a charcoal created from biomass. The study of the determination of the optimum conditions for the manufacture of biocharcoal from sugar palm (Arenga pinnata) has a temperature variable of 300, 350, 400, 450 and 500 0C and time variable of 60, 90 and 120 minutes. Sugar palm was first cut into a small pieces and dried up under the sun and then put into a furnace to carbonate it according to the predetermined variables. The product from furnace was then put inside a desicator to cool it off for 30 minutes and then analyze it with moisture content test, ash content test, volatile matter content test, carbon content test and calorific value test. The best result was obtained at the temperature of 350 0C and 120 minutes of carbonization with the calorific value of 8611,2581 cal/gr, moisture content of %, ash content of %, volatile matter content of % and carbon content of %. Based of the calorific value obtained, the result shows that sugar palm (Arenga pinnata) biocharcoal could be utilize as an renewable alternative source fuels


2020 ◽  
Vol 10 (2) ◽  
pp. 17-22
Author(s):  
Alpian ◽  
Raynold Panjaitan ◽  
Adi Jaya ◽  
Yanciluk ◽  
Wahyu Supriyati ◽  
...  

Charcoal briquettes can be an alternative energy and can be produced from Gerunggang and Tumih types of wood. These two types of wood are commonly found in Kalampangan Village as pioneer plants on burned peatlands. The research objective was to determine the chemical properties of charcoal briquettes produced from biomass waste from land processing without burning with several compositions of Gerunggang wood and Tumih wood. The chemical properties of charcoal briquettes refer to the Indonesian National Standard (SNI 01-6235-2000) and Standard Permen ESDM No. 047 of 2006. The results showed that all composition treatments in the ash content test, fixed carbon content and calorific value met the standards, while the test for volatile content in all treatment compositions did not meet the Indonesian National Standard (SNI 01-6235-2000). The composition of the most potential chemical properties and following the two standards used is the composition of 100% Tumih with ash content of 7.67%, volatile matter content of 27.23%, fixed carbon of 55.00%, and heating value of 5902.18 cal/g.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Anthony Ike Anukam ◽  
Sampson Ntshengedzeni Mamphweli ◽  
Polycarp Sbusiso Mabizela ◽  
Edson Leroy Meyer

Characterizations of biomass and coal were undertaken in order to compare their properties and determine the combustion characteristics of both feedstocks. The study was also intended to establish whether the biomass (corn stover) used for this study is a suitable feedstock for blending with coal for the purpose of cogasification based on composition and properties. Proximate and ultimate analyses as well as energy value of both samples including their blends were undertaken and results showed that corn stover is a biomass material well suited for blending with coal for the purpose of cogasification, given its high volatile matter content which was measured and found to be 75.3% and its low ash content of 3.3% including its moderate calorific value of 16.1%. The results of the compositional analyses of both pure and blended samples of corn stover and coal were used to conduct computer simulation of the cogasification processes in order to establish the best blend that would result in optimum cogasification efficiency under standard gasifier operating conditions. The final result of the cogasification simulation process indicated that 90% corn stover/10% coal resulted in a maximum efficiency of about 58% because conversion was efficiently achieved at a temperature that is intermediate to that of coal and corn stover independently.


INFO-TEKNIK ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 75
Author(s):  
Muhammad Nizar Ramadhan ◽  
Andy Nugraha

The solution to reduce the use of fossil fuels is by utilizing renewable energy such as solar power, wind power, and hydropower, as well as the utilization of other alternative energy derived from biomass. One of alternative energy from biomass that is very potential is briquettes. Tapuk Village, Limpasu Subdistrict, Hulu Sungai Tengah Regency is one of the producers of Alaban wood charcoal, with grade D charcoal in the form of charcoal flakes and is often regarded as waste. This study aims to determine the physical properties of alaban wood charcoal waste briquettes which include water content, ash content, volatile matter content, fixed carbon content, and calorific value, as well as the potential utilization of alaban wood charcoal waste briquettes. so that residents can use Tapuk Village, Limpasu District, Hulu Sungai Tengah Regency as an alternative fuel to substitute kerosene and LPG. The results showed the physical properties of alaban wood charcoal waste briquettes for 3.66 % water content, 3.15 % ash content, 14.31 % volatile matter content, 78.88% fixed carbon content, 6.259.33 cal / gr calorific value. The use of alaban wood charcoal waste briquettes is able to produce consumption costs efficiency of 60% better than the use of LPG and 70% better than the use of kerosene.


2021 ◽  
Author(s):  
Ayuba Danmangu Mangs ◽  
Nikki Jane Wagner ◽  
Mavin Ofentse Moroeng ◽  
Uriah Alexander Lar

Abstract The petrographic composition of coals hosted in the Benue Trough, Nigeria are presented and discussed in terms of paleodepositional setting that influenced the coal-bearing formations. The Benue Trough is a failed arm of the triple ‘RRr’ junction of an inland sedimentary basin that extends in a NE-SW direction from the Gulf of Guinea in the south, to the Chad Basin in the north. A total of twenty-nine (29) coal samples were obtained from 19 coal localities in the Upper (UBT), Middle (MBT), and Lower Benue Trough (LBT). The proximate data indicates the coal samples have a high volatile matter content, low ash yield, and high calorific value (24.82 MJ/Kg, on average). The sulphur values are generally low (average of 0.94 %). The coal samples are generally high in vitrinite, with an average of 59.3% by volume (mineral-matter free). Variation was noted in the inertinite content for the three sub-region samples. Liptinite macerals were not commonly observed in the studied samples and are absent in the MBT samples. The MBT coal samples reported a higher gelification index than the UBT and the LBT samples. Comparison of the array of coal facies models show the MBT samples are different from the UBT and LBT samples, concurring with the characterisation data. In view of the modified equations and the plots used, interpreting depositional environment accurately from just a single model is quite challenging.


Sign in / Sign up

Export Citation Format

Share Document