scholarly journals Analysis of the Quality of Mixed Coconut Shell Waste Briquettes with Various Biomass Additives as Alternative Fuels

Author(s):  
Yusraida Khairani Dalimunthe ◽  
Sugiatmo Kasmungin ◽  
Listiana Satiawati ◽  
Thariq Madani ◽  
Teuku Ananda Rizky

The purpose of this study was to see the best quality of briquettes from the main ingredient of coconut shell waste<br />with various biomass additives to see the calorific value, moisture content, ash content, and volatile matter<br />content of the biomass mixture. Furthermore, further research will be carried out specifically to see the quality of<br />briquettes from a mixture of coconut shell waste and sawdust. The method used in this research is to conduct a<br />literature study of various literature related to briquettes from coconut shell waste mixed with various additives<br />specifically and then look at the best quality briquettes produced from these various pieces of literature. As for<br />what is determined as the control variable of this study is coconut shell waste and as an independent variable,<br />namely coffee skin waste, rice husks, water hyacinth, Bintaro fruit, segon wood sawdust, coconut husk, durian<br />skin, bamboo charcoal, areca nut skin, and leather waste. sago with a certain composition. Furthermore, this<br />paper also describes the stages of making briquettes from coconut shell waste and sawdust for further testing of<br />the calorific value, moisture content, ash content, volatile matter content on a laboratory scale for further<br />research. From various literatures, it was found that the highest calorific value was obtained from a mixture of<br />coconut shell waste and bamboo charcoal with a value of 7110.7288 cal / gr and the lowest calorific value was<br />obtained from a mixture of coconut shell waste and sago shell waste with a value of 114 cal / gr, then for the value<br />The highest water content was obtained from a mixture of coconut shell waste and rice husk with a value of<br />37.70% and the lowest water content value was obtained from a mixture of coconut shell waste 3.80%, then for the<br />highest ash content value was obtained from a mixture of coconut shell waste and coffee skin with a value of<br />20.862% and for the lowest ash content value obtained from a mixture of coconut shell and Bintaro fruit waste,<br />namely 2%, and for the highest volatile matter content value obtained from a mixture of coconut shell and coconut<br />husk waste with a value of 33.45% and for the value of volatile matter levels The lowest was obtained from a<br />mixture of coconut shell waste and sago skin waste with a value of 33 , 45%.

2015 ◽  
Vol 4 (2) ◽  
pp. 46-52
Author(s):  
Erwin Junary ◽  
Julham Prasetya Pane ◽  
Netti Herlina

The availability of the petroleum fuels that deprived from fossil is depleted with the increase of human population. The challenge for this fuel shortage crisis can certainly be anticipated with the manufacture of fuels deprived from renewable biomass. The study of this research is to create a biocharcoal deprived from sugar palm (Arenga pinnata) with the optimum carbonization time and temperature in order to obtain a biocharcoal with the highest calorific value. Biocharcoal is a charcoal created from biomass. The study of the determination of the optimum conditions for the manufacture of biocharcoal from sugar palm (Arenga pinnata) has a temperature variable of 300, 350, 400, 450 and 500 0C and time variable of 60, 90 and 120 minutes. Sugar palm was first cut into a small pieces and dried up under the sun and then put into a furnace to carbonate it according to the predetermined variables. The product from furnace was then put inside a desicator to cool it off for 30 minutes and then analyze it with moisture content test, ash content test, volatile matter content test, carbon content test and calorific value test. The best result was obtained at the temperature of 350 0C and 120 minutes of carbonization with the calorific value of 8611,2581 cal/gr, moisture content of %, ash content of %, volatile matter content of % and carbon content of %. Based of the calorific value obtained, the result shows that sugar palm (Arenga pinnata) biocharcoal could be utilize as an renewable alternative source fuels


2018 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Ratri Yuli Lestari, M.Env. ◽  
Dwi Harsono ◽  
Nazarni Rahmi

Altitude is one of the factors that affect the growth of bamboo. Bamboo species used in this study was Bambusa vulgaris and Arundinaria gigantea. The objectives of this study are to investigate the effect of altitude to the characteristics of bamboo charcoal harvested from three different altitudes (Lumpangi, Banjarbaru/Martapura, Marabahan). Parameters tested in this study were moisture content, ash content, volatile matter, fixed carbon and calorific value. The result showed that altitute significantly affected the characteristics of bamboo charcoal. Bamboo charcoal from Banjarbaru/Martapura had the best characteristics than the charcoal produced from other locations. The moisture content, ash content, volatile matter, fixed carbon and calorific value of B. vulgaris were 0.77 %; 3.49 %; 8.63 %; 87.11 % and 7,331.05 kal/g. The moisture content, ash content, volatile matter, fixed carbon and calorific value of A. gigantea were 0.19 %; 12.46 %; 4.48 %; 87.11 % and 6,640.69 kal/g, respectively.


2019 ◽  
Vol 13 (2) ◽  
pp. 170
Author(s):  
Anindya Husnul Hasna ◽  
J. P. Gentur Sutapa ◽  
Denny Irawati

Limbah industri kayu sengon menjadi salah satu bahan baku dalam pembuatan pelet kayu karena potensinya yang cukup besar. Akan tetapi pelet kayu sengon memiliki kerapatan serta nilai kalor yang rendah. Untuk meningkatkan sifat bahan bakar pelet kayu Sengon maka dilakukan pencampuran bahan dengan serbuk tempurung kelapa. Penelitian ini menggunakan bahan dari limbah serbuk gergaji sengon (Falcataria moluccana (Miq.)) dan limbah tempurung kelapa (Cocos nucifera). Masing-masing bahan dibuat partikel pada 3 kelompok ukuran yaitu 20-40 mesh, 40-60 mesh, dan 60-80 mesh. Ke dalam serbuk kayu sengon ditambahkan serbuk tempurung kelapa dengan penambahan 25%, 50%, dan 75%, sedangkan untuk kontrol (0%) adalah pelet kayu sengon tanpa penambahan tempurung kelapa. Pelet dibuat dengan menggunakan single-pelletizer pada suhu ruang dengan tekanan 100 kg/cm2. Hasil penelitian menunjukkan kombinasi bahan baku yang berbeda (sengon dan tempurung kelapa) memberikan pengaruh terhadap sifat fisika dan kimia pelet kayu. Semakin tinggi persentase campuran serbuk tempurung kelapa pada pelet kayu sengon maka semakin tinggi keteguhan tekan, karbon terikat, total karbon dan nilai kalor, sedangkan untuk kadar zat mudah menguap, kadar abu, kadar N, S, dan H semakin rendah. Pelet terbaik dihasilkan pada kombinasi penambahan tempurung kelapa 50% dengan ukuran 60-80 mesh yang memiliki sifat kadar abu yang rendah (0,79%) dan nilai kalor yang tinggi (5129,07 Kal/g), serta keteguhan tekan yang masih cukup tinggi (444,75N). Hasil tersebut memenuhi standar SNI 8021:2014.Effect of Particle Size and Addition of Coconut Cell on the Quality of Sengon Wood PelletAbstractThe waste of sengon (Falcataria moluccana) industry becomes one of the raw materials in the manufactured of wood pellets, because of its potency. However F. moluccana pellets posses low density and calorific value. To improve its properties, a materials mixing with coconut shell parcticles was conducted. This study used material from the waste of sengon (F. moluccana) sawdust and the waste of coconut (Cocos nucifera). Particles from those materials were made on 3 sizes which are 20-40 mesh, 40-60 mesh, and 60-80 mesh. 25%, 50%, and 75% of coconut shell were added into sengon sawdust, while woode pellets with no additions were used as a control. Pellets are made using single-pelletizer at room temperature with a pressure of 100 kg/cm2. The research results showed if the different material combination (sengon and coconut shell) gave significant effect to physical properties and chemical content of wood pellets. Higher percentage of coconut shell gives higher compressive strength, fixed carbon content, total of carbon, and calorific value, while volatile matter, ash content, N, S, and H content showed lower value. The best pellet was resulted from combination between coconut shell addition 50% and nesh size 60 – 80 which posses quite low ash content (0.79%) and high calorific value (5129.07 Kal/g), and high compression strength (444.75 N). This result has qualified the standard of SNI 8021:2014.


JTAM ROTARY ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 39
Author(s):  
Randi Nasarudin ◽  
Abdul Ghofur

The development of alternative energy sources that can replace fuel oil is very important to utilize natural resources optimally and environmentally. The shell produced from rubber plants is the main ingredient in this study, while the coconut shell is an additional material used to increase the calorific value of alternative fuels which is often referred to as Briquette. The purpose of this study is to determine the effect of variations in raw material composition and variations in pressure on the quality of rubber shells and coconut shell waste briquettes according to SNI standards. The raw material for rubber shell and coconut shell is processed into charcoal using carbonization method with a variation of a mixture of 85%: 15%, 90%: 10% and 95%: 5% with 5% adhesive. Then mix the printed material with a pressure of 300 kg/cm2 and 100kg/cm2. The quality parameters of briquettes are based on SNI 01-6235-2000 standards with moisture content, ash content, volatille matter content, and lacquer value. The results of the study showed that the sample b1 with 85% injection: 15% print pressure 300kg/cm2. The briquette with the sample code b1 has a water content value of 5,10432%, ash content of 14,8604%, volatile matter content of 12,8002%, carbon value of 66,8225% and heating value of 6576.592501 cal/gr. But overall the briquettes have not met the standards of SNI 01-6235-2000 concerning the quality of wood charcoal briquettes. Because the ash content of the briquette exceeds the maximum limit that has been determined, namely a maximum of 8%.  Keywords: Alternative Energy, Rubber Seed Shell, Coconut Shell, Pressure


2016 ◽  
Vol 5 (1) ◽  
pp. 20-26
Author(s):  
Iriany ◽  
Meliza ◽  
Firman Abednego S. Sibarani ◽  
Irvan

The purpose of this research is to know the characteristics of briquettes including ash content, moisture content, volatile matter content, heating value, density, burning rate, tensile strength and to know the proper ratio of water hyacinth and coconut shell mixture under tapioca gluten variation. The ratios of water hyacinth and coconut shell in this research were 1:1, 1:2, 1:3, 1:4 with variation of tapioca gluten 5%, 10%, and 15% of the raw materials. From this research, the ideal composition of briquette is obtain in a mixture of water hyacinth and coconut shell at a ratio of 1:4 with tapioca gluten 10%, ash content 9.718%, moisture content 1.374%, volatile  matter content 14.814%, heating value 6,879.596 cal/g, density 0.983 g/cm3, burning rate 3.021 × 10-3 g/second and tensile strength 18.400 g/cm2.


2018 ◽  
Vol 2 (1) ◽  
pp. 91-100
Author(s):  
Sofia Mustamu ◽  
Gysberth Pattiruhu

Biopelet is one of the renewable energy alternatives that have uniformity of size, shape, density, and energy content. The purpose of this study was to examine the characteristics of biopelet consisting of a mixture of cajeput and gondorukem, and to determine the composition of the raw materials that can produce a biopelet with the best quality. The compositions of a mixture in this research are as follow 95%:5%, 90%:10%, 80%:20%, 70%:30%, 60%:40%, 50%:50%, cajeput 100% and gondorukem 100%. The manufacture of biopelet used a 20 mesh of dust with the pressure of 526.4 kg/cm2  at a temperature of 200 ◦C for 15 minutes. Types of tests performed on biopelet include density, moisture content, volatile matter, ash content, carbon bonded, and calorific value. The results of the best quality of biopelet was in the percentage of cajeput and gondorukem was 70%:30%,  tests showed densities of biopelet 0,84 g/cm3, moisture content5,89%, ash content 2,42%, volatile matter 73,99%, fixed carbon 18,96%, and calorific value 5152 kkal/kg.


2021 ◽  
Vol 328 ◽  
pp. 01019
Author(s):  
Siswanto ◽  
Kindriari Nurma Wahyusi ◽  
Renova Panjaitan

Contributing to the solution-finding for the availability of dwindling fossil energy, this study produced charcoal fuel from a biomass mixture of coconut shell waste and coal, using adhesive from meranti wood. The research was conducted by observing the effect of the carbonization temperature parameters and the amount of coal used in the mixture on the quality of charcoal fuel. The quality was evaluated on the calorific value, water content, and ash content. In addition, the data were analyzed mathematically using the response surface methodology to determine the interaction effect of independent variables on the response and to obtain the best conditions for producing charcoal fuel with the desired quality in the variable range of carbonization temperature of 300oC-500oC and coal mass in the range 10-30 grams. The results revealed that the temperature parameter had a significant effect on the calorific value, water content, and ash content. While the amount of coal mass did not significantly affect the calorific value and ash content but significantly affected the water content of charcoal fuel. The carbonization temperature and the amount of coal in the mixture of raw materials suggested were 409.625oCand10gr.


2020 ◽  
Vol 154 ◽  
pp. 02003
Author(s):  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
Przemysław Pachytel

In the municipal and residential sector in Poland, as many as 50% of households are heated by solid fuel boilers. Most often these are, unfortunately, inefficient boilers, fired with low-quality coal. This study characterizes the market of boilers for solid fuels in Poland, and also presents the main apportionment of these devices, due to the different criteria that characterize them. The current legal changes in the scope of energy and emission requirements for solid fuel boilers are also discussed. The main purpose of this work is to analyze the real efficiency of the solid fuel over-fired boiler used, depending on the fuel burned in it. The process of burning selected fuels (seasoned wood, coal and pea coal) in the boiler was preceded by tests of these fuels to determine their energy parameters, such as moisture, ash content, the share of volatile matter and calorific value. In the next step, the energy efficiency obtained by the tested solid fuel boiler during the combustion of selected solid fuels was compared. The highest efficiency was achieved during the combustion of pea coal, and the lowest was achieved during the combustion of wood. In any case, the nominal efficiency value was achieved. Solutions that could improve the quality of the combustion process in this type of boiler were proposed.


2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Fonny Rianawati ◽  
Zainal Abidin ◽  
Muhammad Naparin

This study aims to conduct a study of the quality value of briquettes made from mixing straw and rice husks which include a flame test and combustion rate which is expected to be used to educate people around the forest by providing innovation and technology regarding the use of post-harvest waste. The results showed that the value of the quality of briquettes made from variations in the mixing of straw and rice husks including the flame test of the combustion rate obtained results, for treatment A (100% straw) of 0.68 gr/minute, treatment B (100% husk) of 0 ,57 gr/minute, treatment C (Husk 75% + Straw 25%) was 0.40 gr/minute, treatment D (Husk 25% + Straw 75%) was 0.46 r/minute and treatment E (Husk 50% + Straw 50%) of 0.43 gr/minute. The value of the flame to boiling time for treatment A = 38.62 minutes, treatment B = 31.05, treatment C = 23.22 minutes, treatment D = 36.05 and treatment E = 27.95 minutes. Density values of all treatments, and the water content for treatment B and treatment C can meet SII. While other parameters: ash content, volatile matter, bound carbon and calorific value still cannot meet the standards, so it is recommended to carry out further research with other variations of treatment, in order to obtain briquettes with quality that can meet the standards.


2020 ◽  
Vol 10 (2) ◽  
pp. 17-22
Author(s):  
Alpian ◽  
Raynold Panjaitan ◽  
Adi Jaya ◽  
Yanciluk ◽  
Wahyu Supriyati ◽  
...  

Charcoal briquettes can be an alternative energy and can be produced from Gerunggang and Tumih types of wood. These two types of wood are commonly found in Kalampangan Village as pioneer plants on burned peatlands. The research objective was to determine the chemical properties of charcoal briquettes produced from biomass waste from land processing without burning with several compositions of Gerunggang wood and Tumih wood. The chemical properties of charcoal briquettes refer to the Indonesian National Standard (SNI 01-6235-2000) and Standard Permen ESDM No. 047 of 2006. The results showed that all composition treatments in the ash content test, fixed carbon content and calorific value met the standards, while the test for volatile content in all treatment compositions did not meet the Indonesian National Standard (SNI 01-6235-2000). The composition of the most potential chemical properties and following the two standards used is the composition of 100% Tumih with ash content of 7.67%, volatile matter content of 27.23%, fixed carbon of 55.00%, and heating value of 5902.18 cal/g.


Sign in / Sign up

Export Citation Format

Share Document