scholarly journals A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
NianSong Zhang ◽  
Dong Wang ◽  
Bei Peng ◽  
Yong He

A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

Science ◽  
2020 ◽  
Vol 368 (6496) ◽  
pp. 1239-1242 ◽  
Author(s):  
Ben Smith ◽  
Helen A. Fricker ◽  
Alex S. Gardner ◽  
Brooke Medley ◽  
Johan Nilsson ◽  
...  

Quantifying changes in Earth’s ice sheets and identifying the climate drivers are central to improving sea level projections. We provide unified estimates of grounded and floating ice mass change from 2003 to 2019 using NASA’s Ice, Cloud and land Elevation Satellite (ICESat) and ICESat-2 satellite laser altimetry. Our data reveal patterns likely linked to competing climate processes: Ice loss from coastal Greenland (increased surface melt), Antarctic ice shelves (increased ocean melting), and Greenland and Antarctic outlet glaciers (dynamic response to ocean melting) was partially compensated by mass gains over ice sheet interiors (increased snow accumulation). Losses outpaced gains, with grounded-ice loss from Greenland (200 billion tonnes per year) and Antarctica (118 billion tonnes per year) contributing 14 millimeters to sea level. Mass lost from West Antarctica’s ice shelves accounted for more than 30% of that region’s total.


2018 ◽  
Vol 64 (244) ◽  
pp. 333-342 ◽  
Author(s):  
BRENT M. MINCHEW ◽  
G. HILMAR GUDMUNDSSON ◽  
ALEX S. GARDNER ◽  
FERNANDO S. PAOLO ◽  
HELEN A. FRICKER

ABSTRACTSatellite observations of gravity anomalies, ice-surface elevation and glacier velocity show significant increases in net grounded-ice-mass loss over the past decade along the Bellingshausen Sea sector (BSS), West Antarctica, in areas where warm (>1°C) sea water floods the continental shelf. These observations provide compelling but indirect evidence that mass losses are driven primarily by reduced buttressing from the floating ice shelves caused by ocean-driven ice-shelf thinning. Here, we combine recent observations of ice velocity, thickness and thickness changes with an ice flow model to study the instantaneous dynamic response of BSS outlet glaciers to observed ice-shelf thinning, alone. Our model results show that multiple BSS outlet glaciers respond instantaneously to observed ice-shelf thinning, particularly in areas where ice shelves ground at discrete points. Increases in modeled and observed dynamic mass losses, however, account for ~5% of the mass loss rates estimated from gravity anomalies and changes in ice-surface elevation, suggesting that variations in surface mass balance may be key to understanding recent BSS mass loss. Our approach isolates the impact of ice-shelf thinning on glacier flow and shows that if ice-shelf thinning continues at or above current rates, total BSS mass loss will increase in the next decade.


2011 ◽  
Vol 474-476 ◽  
pp. 1974-1979
Author(s):  
Guo Liang Zhou ◽  
Xiao Jun Li ◽  
Xiao Bo Peng

Based on the large spring/stiffness method (LSM), this paper develops an improved technique (I-LSM) applicable to structural dynamic analysis with the assumption of Rayleigh damping. To estimate the accuracy of the technique, the dynamic response is analyzed for a 2-DOFs model respectively subjected to uniform/nonuniform seismic excitations. It indicates that the traditional LSM is inapplicable when Rayleigh damping is adopted. And the errors increase monotonously with the aggrandizement of damping. It’s also validated that the I-LSM based on the modification of displacement considering the influences of Rayleigh damping presented in this paper is able to effectively yield results almost identical to those of theoretical methods with errors beneath 4%.


Author(s):  
Hongwei Zhu ◽  
Changfang Zhao

The aim of this work was to study the anti-penetration effect of sandwich composite armor with ceramic honeycomb structures filled with aluminum alloy under the impact of high-speed projectiles. The finite element software ABAQUS was used to conduct numerical simulation research on the process of a standard 12.7-mm projectile penetrating sandwich composite armor. The armor-piercing projectile model was simplified as a rigid body. The numerical simulation models were applied to three different sandwich composite armor structures (A, B, and C), each with a total armor thickness of 25 mm. The penetration resistance of the three kinds of composite armor was studied. We obtained velocity curves for the rigid projectile penetrating the different structures. The failure forms and penetration resistance characteristics of the three composite armor structures adopted in this paper were analyzed. In addition, the velocity reduction ratio is proposed as an index to evaluate the penetration resistance performance of the armor. The simulation results revealed decreasing rates of projectile speed in the structures A, B, and C of 69.6%, 91.1%, and 100%, respectively. The third composite armor (structure C) designed here has excellent penetration resistance and can block the penetration of a high-speed (818m/s) rigid projectile. This study can provide some reference for the application of laminated armor material in anti-penetration protection structures.


Author(s):  
K. Tsuno ◽  
T. Honda ◽  
Y. Harada ◽  
M. Naruse

Developement of computer technology provides much improvements on electron microscopy, such as simulation of images, reconstruction of images and automatic controll of microscopes (auto-focussing and auto-correction of astigmatism) and design of electron microscope lenses by using a finite element method (FEM). In this investigation, procedures for simulating the optical properties of objective lenses of HREM and the characteristics of the new lens for HREM at 200 kV are described.The process for designing the objective lens is divided into three stages. Stage 1 is the process for estimating the optical properties of the lens. Firstly, calculation by FEM is made for simulating the axial magnetic field distributions Bzc of the lens. Secondly, electron ray trajectory is numerically calculated by using Bzc. And lastly, using Bzc and ray trajectory, spherical and chromatic aberration coefficients Cs and Cc are numerically calculated. Above calculations are repeated by changing the shape of lens until! to find an optimum aberration coefficients.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Author(s):  
M.E. Cantino ◽  
M.K. Goddard ◽  
L.E. Wilkinson ◽  
D.E. Johnson

Quantification in biological x-ray microanalysis depends on accurate evaluation of mass loss. Although several studies have addressed the problem of electron beam induced mass loss from organic samples (eg., 1,2). uncertainty persists as to the dose dependence, the extent of loss, the elemental constituents affected, and the variation in loss for different materials and tissues. in the work described here, we used x-ray counting rate changes to measure mass loss in albumin (used as a quantification standard), salivary gland, and muscle.In order to measure mass loss at low doses (10-4 coul/cm2 ) large samples were needed. While freeze-dried salivary gland sections of the required dimensions were available, muscle sections of this size were difficult to obtain. To simulate large muscle sections, frog or rat muscle homogenate was injected between formvar films which were then stretched over slot grids and freeze-dried. Albumin samples were prepared by a similar procedure. using a solution of bovine serum albumin in water. Samples were irradiated in the STEM mode of a JEOL 100C.


Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


Sign in / Sign up

Export Citation Format

Share Document