scholarly journals Applications of Thermoresponsive Magnetic Nanoparticles

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ibrahim Yildiz ◽  
Banu Sizirici Yildiz

In recent years, magnetic nanoparticles carrying thermoresponsive polymeric coatings have gained increasing attention in material sciences due to the fact that resultant platforms offer controllable modalities such as imaging, drug delivery, and magnetic separation. As a result, novel materials including biosensors, therapeutic platforms, imaging agents, and magnetic separators have been realized. Since the number of publications reporting the applications of thermoresponsive magnetic nanoparticle has increased steadily over the years, a comprehensive review will be beneficial. In this paper, we aim to review publications studying applications of thermoresponsive nanoparticles in biomedical sciences as well as in environmental and chemical sciences. The paper also briefly discusses chemical formulations, characterizations, and properties of the thermoresponsive magnetic particles and then provides future outlooks.

2004 ◽  
Vol 820 ◽  
Author(s):  
Ramazan Asmatulu ◽  
Richard.O. Claus ◽  
Judy S. Riffle ◽  
Michael Zalich

AbstractBiodegradable magnetic nanoparticles were synthesized using Poly(L-Lactic Acid) and magnetite nanoparticles (∼14 nm) at different dosages, and then these nanaoparticles (nanocomposites) and pure magnetic particles were targeted in external magnetic fields by changing the test parameters. The magnetic field test results showed that magnetic saturation, fluid speed, magnetic field distance and particle size were extremely effective for a magnetic guidance system that is needed for an effective drug delivery approach. Thus, it is assumed that such nanoparticles can carry drugs (chemotherapy) to be able to cure cancer tumors as well as many other diseases.


2021 ◽  
Vol 22 (19) ◽  
pp. 10734
Author(s):  
Elena N. Velichko ◽  
Elina K. Nepomnyashchaya ◽  
Maksim A. Baranov ◽  
Alexey N. Skvortsov ◽  
Ivan V. Pleshakov ◽  
...  

In this study, interactions of Fe3O4 magnetic nanoparticles with serum albumin biomolecules in aqueous solutions were considered. The studies were conducted with the laser correlation spectroscopy and optical analysis of dehydrated films. It was shown that the addition of magnetite to an albumin solution at low concentrations of up to 10−6 g/L led to the formation of aggregates with sizes of up to 300 nm in the liquid phase and an increase in the number of spiral structures in the dehydrated films, which indicated an increase in their stability. With a further increase in the magnetite concentration in the solution (from 10−4 g/L), the magnetic particles stuck together and to albumin, thus forming aggregates with sizes larger than 1000 nm. At the same time, the formation of morphological structures in molecular films was disturbed, and a characteristic decrease in their stability occurred. Most stable films were formed at low concentrations of magnetic nanoparticles (less than 10−4 g/L) when small albumin–magnetic nanoparticle aggregates were formed. These results are important for characterizing the interaction processes of biomolecules with magnetic nanoparticles and can be useful for predicting the stability of biomolecular films with the inclusion of magnetite particles.


Author(s):  
Priyatama V. Powar

This article discusses about magnetic nanoparticles, their physico-chemical properties various applications in medicinal sectors and technology advancements. Superparamagnetic, high magnetic susceptibility, non-toxicity, biocompatibility and less Curie temperature are critical characteristics of magnetic nanoparticles which make them suitable for assorted medical applications. Now a day’s magnetic particles play significant role in diverse technological areas with potential applications in fields such as electronics, energy biomedicine and diagnosis. Magnetic nanoparticles have been a vivacious topic of extreme research for the last fifty years due to its top-down approaches. The prospective of magnetic nanoparticles stems from the fundamental characteristics of their magnetic cores collective with their drug loading capability, biochemical properties. This article review the modern advancement of magnetic nanoparticles for drug delivery, focusing chiefly on the impending applications like targeted drug delivery, bioseparation, ,magnetic resonance and cancer diagnosis, induction of hyperthermia, induction of hyperthermia, nanorobotic agents ,tissue engineering ,artificial muscle  ,magnetically activated polymers, controlled tissue assembly, control cell function, bone regeneration scaffold ,destruction of blood clots ,labeling stem cells with magnetic nanoparticles, implant-assisted intrathecal magnetic drug targeting, biodegradable magnetic nanocomposite stent, local drug delivery etc.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jordi S. Andreu ◽  
Pablo Barbero ◽  
Juan Camacho ◽  
Jordi Faraudo

Magnetic separation has gained much attention due to its implications in different fields, becoming feasible as an alternative to existent technologies at the industrial and lab scale. Substantial efforts are focused to improve the magnetic particles used in these applications. Here we show how a relatively simple and low-cost simulation strategy (tracer simulations) can be employed to predict the effect of various key factors in magnetic separation processes, namely, particle properties and magnetic separator designs. For concreteness, we consider here specific problems in magnetic separation. The first one is the effect of different profiles of the magnetic field in the separation of magnetic nanoparticles, and the second one is the magnetophoresis of colloidal particles in a dispersion of magnetic nanoparticles.


2013 ◽  
Vol 459 ◽  
pp. 51-59 ◽  
Author(s):  
Chang Shu Tsai ◽  
Wei Chung Liu ◽  
Hong Yi Chen ◽  
Wei Chun Hsu

In the aspect of biomedical diagnosis, magnetic nanoparticle can be used as drug carrier and MRI/ SPECT/ PET contrast agents. Magnetic fluid hyperthermia is one of the most important cancer therapies. Magnetic nanoparticles display their unique features as heating mediators for hyperthermia. In this study, Fe3O4magnetic nanoparticle was prepared by using chemical co-precipitation method. Tc-99m pertechnetate with Fe3O4magnetic nanoparticles is prepared by using magnet adsorption method. An attempt was also made to evaluate the application in the field of magnetic targeted drug delivery and radioactive targeted cancer treatment in the future. In this work, preparation and characterization of non-polymer and polymer (dextran) coated Fe3O4magnetic nanoparticles labeled with technetium-99m pertectnetate were evaluated and served as precursors study. The Tc-99m labeling efficiency of in-house Fe3O4magnetic nanoparticles (MNP) and commercial kit were ca.98.4 % and 85% (n=5), under the same conc. of 6mM, 0.1 ml of SnCl2·2H2O, respectively. The Tc-99m labeling efficiency of magnetic nanoparticles with its dextran-coated was ca. 58.2% (n=5) at the same conc. and volume of SnCl2·2H2O. The in-vitro stabilities of the 3 kinds of magnetite magnetic fluids were higher than 96.0% (n=5) during 2 hours. The reducing agent of SnCl2·2H2O plays a key role due to its reducing ability for Tc-99m pertechnetate. The optimal reaction time of SnCl2·2H2O with Tc-99m is better under 1 hour. In conclusion, the Fe3O4magnetic nanoparticle labeled with Tc-99m pertechnetate has shown good qualities for its labeling efficiency and stability. It may be feasible preliminary to utilize in the application of magnetic targeted drug delivery of bio-medicine.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3525
Author(s):  
Peng Liu ◽  
Pascal Jonkheijm ◽  
Leon W. M. M. Terstappen ◽  
Michiel Stevens

Here, we review the characteristics and synthesis of magnetic nanoparticles (MNPs) and place these in the context of their usage in the immunomagnetic enrichment of Circulating Tumor Cells (CTCs). The importance of the different characteristics is explained, the need for a very specific enrichment is emphasized and different (commercial) magnetic separation techniques are shown. As the specificity of an MNP is in a large part dependent on the antibody coated onto the particle, different strategies in the coupling of specific antibodies as well as an overview of the available antibodies is given.


Nanoscale ◽  
2014 ◽  
Vol 6 (20) ◽  
pp. 11553-11573 ◽  
Author(s):  
Aziliz Hervault ◽  
Nguyễn Thị Kim Thanh

Magnetic nanoparticles have great potential as mediators of localised heat as well as vehicles for drug delivery to have synergistic effect of thermo-chemotherapy for cancer treatment.


2015 ◽  
Vol 17 (7) ◽  
pp. 3671-3686 ◽  
Author(s):  
Renato Dalpozzo

The introduction of magnetic nanoparticles (MNPs) has favoured the recovery of organocatalysts for asymmetric catalysis with techniques of magnetic separation.


2011 ◽  
Vol 317-319 ◽  
pp. 460-463 ◽  
Author(s):  
G An ◽  
D. Y Ju ◽  
T Kumazawa ◽  
M Okasabe

This paper is mainly to describe coating method of MgO nano film with about 2nm and Bio-medicine materials on surface the magnetic nanoparticle. The coated composite magnetic nanoparticles of coated were dispersed into ion exchange water, widely known as magnetic fluids for applying to Drug Delivery System(DDS). Through observation of micro-structure of MgO film and the bio-nanopaticles on coating surface, and evaluation of magnetic property, we known that the effectiveness of this coating method of MgO and the bio-medicine coated on surface of magnetic nanoparticles was confirmed.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Weizhong Wei ◽  
Zhen Wang

Finite element numerical simulations were carried out in 2D geometry to calculate the magnetic force on magnetic nanoparticles under a specially fabricated electromagnet. The particle motion was modeled by a system of ordinary differential equations. The snapshots of trajectories of 4000 MNPs with and without magnetic field were analyzed and qualitatively found to be in agreement with camera visualizations of MNP movement in a container. The results of the analysis could be helpful for the design of electromagnetic field and motion analysis of magnetic particles for the delivery of magnetic materials in biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document