scholarly journals Transparent Conductive Films of Copper Nanofiber Network Fabricated by Electrospinning

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sungyeoul Kim ◽  
Hyundong Lee ◽  
Dahye Kim ◽  
DaAe Ko ◽  
Dojin Kim ◽  
...  

Cu nanofiber networks can be a good alternative of the Ag nanowire of high electrical conductivity while having the advantage of low price. An electrospinning method was developed to fabricate copper nanofiber network for use as a transparent conductive film on glass substrate. The effects of liquid diluents for electrospinning processability were examined in relation to the subsequent Cu nanofiber formation processes. Electrospinning solutions of copper acetate/polyvinyl alcohol (PVA) and copper nitrate trihydrate/polyvinyl butyral (PVB) were investigated. The polymer mixing solutions influenced the subsequent annealing temperatures for removal of the polymers and reduction of the formed CuO nanofibers to Cu metal nanofibers. The morphology and structures of the formed nanofiber networks were examined by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and so forth. The mixture with PVB provided lower annealing temperatures suitable for application to flexible substrates.

2014 ◽  
Vol 936 ◽  
pp. 618-623
Author(s):  
Lung Chien Chen ◽  
Xiu Yu Zhang ◽  
Kuan Lin Lee

Cu-doped ZnO (CZO) films have been widely discussed due to its potential applications in semiconductor devices, such as gas sensors or solar cells, but few articles were reported to show the effect on properties of CZO films by using different Cu sources. The article demonstrates that CZO films have been prepared by using different Cu source via a simple ultrasonic spray method, in which copper nitrate and copper acetate were used as copper sources. Optical properties of CZO films prepared by copper nitrate and copper acetate were investigated by transmittance and photoluminescence measurement. The X-ray diffraction analysis and field emission scanning electron microscopy were used to investigate the composition and the morphology of the films. The CZO films prepared by using copper acetate shows better optical properties by comprehensive analysis.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2479
Author(s):  
Stefano Rossi ◽  
Luciana Volgare ◽  
Carine Perrin-Pellegrino ◽  
Carine Chassigneux ◽  
Erick Dousset ◽  
...  

Surface treatments are considered as a good alternative to increase biocompatibility and the lifetime of Ti-based alloys used for implants in the human body. The present research reports the comparison of bare and modified Ti6Al4V substrates on hydrophilicity and corrosion resistance properties in body fluid environment at 37 °C. Several surface treatments were conducted separately to obtain either a porous oxide layer using nanostructuration (N) in ethylene glycol containing fluoride solution, or bulk oxide thin films through heat treatment at 450 °C for 3 h (HT), or electrochemical oxidation at 1 V for 3 h (EO), as well as combined treatments (N-HT and N-EO). In-situ X-ray diffraction and ex-situ transmission electron microscopy have shown that heat treatment gave first rise to the formation of a 30 nm thick amorphous layer which crystallized in rutile around 620 °C. Electrochemical oxidations gave rise to a 10 nm thick amorphous film on the top of the surface (EO) or below the amorphous nanotube layer (N-EO). Dual treated samples presented similar results with a more stable behavior for N-EO. Finally, for both corrosion and hydrophilicity points of view, the new combined treatment to get a total amorphous N-EO sample seems to be the best and even better than the partially crystallized N-HT sample.


2007 ◽  
Vol 534-536 ◽  
pp. 77-80 ◽  
Author(s):  
Jae Hwan Pee ◽  
Dong Wook Lee ◽  
Ungsoo Kim ◽  
Eui Seok Choi

A hyrdrothermal reaction process has been developed to prepare rod-like crystals of copper oxide using copper nitrate trihydrate as a function of synthesis temperature, stirring speed and solution pH value. The properties of the fabricated crystals were studied using scanning electron microscopy, X-ray diffraction and particle size analysis. The morphology of the synthesized CuO was dependent on both the pH value of the solution and the morphology of the seed materials. Synthesized particles have regular morphologies and a uniform size distribution.


1997 ◽  
Vol 12 (6) ◽  
pp. 1472-1480 ◽  
Author(s):  
Katherine C. Chen ◽  
Samuel M. Allen ◽  
James D. Livingston

Microstructures of two-phase Ti–Cr alloys (Ti-rich bcc + TiCr2 and Cr-rich bcc + TiCr2) are analyzed. A variety of TiCr2 precipitate morphologies is encountered with different nominal alloy compositions and annealing temperatures. Lattice constants and crystal structures are determined by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Orientation relationships between the beta bcc solid solution and C15 TiCr2 Laves phase are understood in terms of geometrical packing, and are consistent with a Laves phase growth mechanism involving twinning.


2021 ◽  
Author(s):  
Adedibu Clement Tella ◽  
Samson Owalude ◽  
Vincent Adimula ◽  
Adetola Oladipo ◽  
Victoria Olayemi ◽  
...  

Abstract The coordination polymer [Cu2(TDPH)4(QNX)].DMF, (QNX = Quinoxaline; TDPH = 3,3-thiodipropionic acid), has been prepared by reaction of copper acetate, TDPH, and quinoxaline. The compound was characterized by elemental analysis, FTIR spectroscopy, and single-crystal X-ray diffraction. The crystal is monoclinic with a P21/n space group and dimensions of a = 12.889(3) Å, b = 14.983(4) Å, c = 14.091(3) Å, α = 90 °, β = 90.200(11) °, γ = 90 °, V = 2721.18 (2) Å3, Z = 4. The ligands are hexagonally coordinated to the Cu(II) centre in the form of Cu2O4N with one nitrogen atom from the quinoxaline ligand, and four oxygen atoms from four TDPH molecules in a monodentate fashion. The Cu-Cu bond length was 2.642(1) and 2.629(1) Å for the Cu1----Cu1 and Cu2----Cu2 bonds. The QNX ligand bridged the two copper atoms. The catalytic reduction of 4-nitrophenol to 4-aminophenol using NaBH4 in the presence of [Cu2(TDPH)4(QNX)].DMF, as catalyst was completed within 11 minutes. The 4-aminophenol product was confirmed using 1H NMR spectroscopy.


2010 ◽  
Vol 177 ◽  
pp. 673-676 ◽  
Author(s):  
Jun Xue ◽  
Hou Kui Xiang ◽  
Hong Qiao Ding ◽  
Shu Li Pang ◽  
Xue Hua Wang ◽  
...  

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.


2013 ◽  
Vol 802 ◽  
pp. 247-251 ◽  
Author(s):  
Sineenart Suphankij ◽  
Wanichaya Mekprasart ◽  
Wisanu Pecharapa

TiO2 nanofibers were fabricated via an electrospinning method. Titanium (IV) isopropoxide (TIP) and poly (viny pyrrolidone) (PVP) were used as a starting precursor. The electrospun TiO2 nanofibers were obtained by injecting the precursor through a needle under a strong electrical field. As-spunfibers were calcined at 500, 600, 700, 800 and 900 °C for 2 h. The structural of properties of the nanofibers were characterized using X-ray diffraction (XRD) and Scanning electron microscope (SEM). XRD results indicated that the crystallinity of TiO2 nanofibers corresponds to rutile and anatase phase of TiO2 depending on calcinations temperature. SEM results indicated that the surface morphology and size TiO2 nanofibers. The photocatalytic degradation of RhB may be attributed to significant absorption enhancement in visible region by phase transformation of TiO2 nanofibers and fiber size dependence active surface areas.


2021 ◽  
Author(s):  
Mahyar Fazeli ◽  
Faegheh Fazeli ◽  
Tamrin Nuge ◽  
Omid Abdoli ◽  
Shokooh Moghaddam

Abstract The principal intention of this work is to fabricate and characterize the polyamide/chitosan nanocomposite by a novel single solvent method through the electrospinning procedure. The thermal properties and morphology of prepared nanocomposite are studied by thermogravimetric analysis (TGA) and field-emission scanning electron microscopy (FE-SEM). TGA exposed that the primary decomposition temperature is reduced with rising of chitosan content in the nanocomposites and origin disintegration temperature for polyamide/chitosan nanocomposites is perceived to be in the range from 300 to 500°C. Also, FE-SEM images demonstrated that the nanofibers of chitosan have good adhesion on the matrix and are well-oriented. Besides, the crystallinity and structural characteristics of the polyamide/chitosan nanocomposites are investigated by using X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FT-IR), respectively. The results of XRD proved that the successful blending of chitosan in polyamide is achieved via the electrospinning method. FT-IR results demonstrate that the nanofibers are consist of amine groups. Also, the electrical properties of the nanocomposite improved with the increasing content of chitosan and the conductivity of the polyamide/chitosan 5 wt% demonstrates the maximum current of 0.3 nA. Besides, the sheet resistance of the composite reduced 118 to 20 × 109 Ω with raising the chitosan volume from 0 to 5 wt%.


2021 ◽  
pp. 2150395
Author(s):  
Xiang-Bing Li ◽  
Da-Qian Mo ◽  
Xiao-Yan Niu ◽  
Qian-Qian Zhang ◽  
Shu-Yi Ma ◽  
...  

ZnO–SnO2 composite nanorods with rough surfaces were synthesized via a coaxially nested needle electrospinning method. The morphology and nanostructure were characterized by scanning electron microscopy, atomic force microscope, EDS mapping, nitrogen physical adsorption, and X-ray diffraction. The synthesis mechanisms of ZnO–SnO2 nanorods were discussed, which combined the gas sensitivity advantages of different materials. ZnO–SnO2 nanorods sensor with good ethanol gas sensitivity achieved accurate measurement of continuous ethanol concentration. The sensor exhibited good selectivity to ethanol in the presence of formaldehyde, methanol, acetone, acetic acid, benzene, and xylene at 290[Formula: see text]C. The response and recovery time to 100 ppm ethanol were about 13 and 35 s, respectively. The energy band, barrier, charge transfer of ZnO–SnO2 composite material was discussed, and its optimization of gas sensitivity was analyzed in detail.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael B. Toffolo ◽  
Giulia Ricci ◽  
Luisa Caneve ◽  
Ifat Kaplan-Ashiri

Abstract In nature, calcium carbonate (CaCO3) in the form of calcite and aragonite nucleates through different pathways including geogenic and biogenic processes. It may also occur as pyrogenic lime plaster and laboratory-precipitated crystals. All of these formation processes are conducive to different degrees of local structural order in CaCO3 crystals, with the pyrogenic and precipitated forms being the least ordered. These variations affect the manner in which crystals interact with electromagnetic radiation, and thus formation processes may be tracked using methods such as X-ray diffraction and infrared spectroscopy. Here we show that defects in the crystal structure of CaCO3 may be detected by looking at the luminescence of crystals. Using cathodoluminescence by scanning electron microscopy (SEM-CL) and laser-induced fluorescence (LIF), it is possible to discern different polymorphs and their mechanism of formation. We were thus able to determine that pyrogenic calcite and aragonite exhibit blue luminescence due to the incorporation of distortions in the crystal lattice caused by heat and rapid precipitation, in agreement with infrared spectroscopy assessments of local structural order. These results provide the first detailed reference database of SEM-CL and LIF spectra of CaCO3 standards, and find application in the characterization of optical, archaeological and construction materials.


Sign in / Sign up

Export Citation Format

Share Document