scholarly journals Making Blood: The Haematopoietic Niche throughout Ontogeny

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad A. Al-Drees ◽  
Jia Hao Yeo ◽  
Badwi B. Boumelhem ◽  
Veronica I. Antas ◽  
Kurt W. L. Brigden ◽  
...  

Approximately one-quarter of all cells in the adult human body are blood cells. The haematopoietic system is therefore massive in scale and requires exquisite regulation to be maintained under homeostatic conditions. It must also be able to respond when needed, such as during infection or following blood loss, to produce more blood cells. Supporting cells serve to maintain haematopoietic stem and progenitor cells during homeostatic and pathological conditions. This coalition of supportive cell types, organised in specific tissues, is termed the haematopoietic niche. Haematopoietic stem and progenitor cells are generated in a number of distinct locations during mammalian embryogenesis. These stem and progenitor cells migrate to a variety of anatomical locations through the conceptus until finally homing to the bone marrow shortly before birth. Under stress, extramedullary haematopoiesis can take place in regions that are typically lacking in blood-producing activity. Our aim in this review is to examine blood production throughout the embryo and adult, under normal and pathological conditions, to identify commonalities and distinctions between each niche. A clearer understanding of the mechanism underlying each haematopoietic niche can be applied to improvingex vivocultures of haematopoietic stem cells and potentially lead to new directions for transplantation medicine.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
I-Na Lu ◽  
Celia Dobersalske ◽  
Laurèl Rauschenbach ◽  
Sarah Teuber-Hanselmann ◽  
Anita Steinbach ◽  
...  

AbstractBrain tumors are typically immunosuppressive and refractory to immunotherapies for reasons that remain poorly understood. The unbiased profiling of immune cell types in the tumor microenvironment may reveal immunologic networks affecting therapy and course of disease. Here we identify and validate the presence of hematopoietic stem and progenitor cells (HSPCs) within glioblastoma tissues. Furthermore, we demonstrate a positive link of tumor-associated HSPCs with malignant and immunosuppressive phenotypes. Compared to the medullary hematopoietic compartment, tumor-associated HSPCs contain a higher fraction of immunophenotypically and transcriptomically immature, CD38- cells, such as hematopoietic stem cells and multipotent progenitors, express genes related to glioblastoma progression and display signatures of active cell cycle phases. When cultured ex vivo, tumor-associated HSPCs form myeloid colonies, suggesting potential in situ myelopoiesis. In experimental models, HSPCs promote tumor cell proliferation, expression of the immune checkpoint PD-L1 and secretion of tumor promoting cytokines such as IL-6, IL-8 and CCL2, indicating concomitant support of both malignancy and immunosuppression. In patients, the amount of tumor-associated HSPCs in tumor tissues is prognostic for patient survival and correlates with immunosuppressive phenotypes. These findings identify an important element in the complex landscape of glioblastoma that may serve as a target for brain tumor immunotherapies.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 534-534
Author(s):  
Mira Jeong ◽  
Xiangfan Huang ◽  
Xiaotian Zhang ◽  
Jianzhong Su ◽  
Muhammad S Shamim ◽  
...  

Abstract Higher order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. In order to understand how the DNA methylation is connected with nuclear architecture and can vary between cell types and during cell differentiation, we began to explore the 3D architecture of human hematopoietic stem and progenitor cells (HSPCs) by performing in situ Hi-C experiments at 5kb resolution. We found that large (~10kb) DNA methylation canyons can form long loops connecting anchor loci that may be dozens of megabases apart. These canyons also can form interchromosomal links (Fig.1a and 1b). We further confirmed these long-range interactions by performing 3D-FISH using two color fluorescent labeled probes that spanned the HOXA locus loop anchor (green) and the SP8 locus loop anchor (red), which are ~7MB apart (Fig. 1c). In order to begin to investigate mechanisms that may regulate these long loops and how they relate to commonly studied loops that are mediated by CTCF-extrusion, we examined their properties systematically. Interestingly, the anchors of long loops exhibited minimal enrichment for CTCF (1.04-fold), and, even when CTCF was bound, they did not obey the convergent rule. The data suggest these loops are formed by phase separation of the interacting loci to form a genomic subcompartment, rather than by CTCF-mediated extrusion. Next, we sought to determine whether other features correlated with these long loops. By aligning DNA methylation profiles with the Hi-C data, we observed that anchors often corresponded to regions of very low DNA methylation, and thus sought to analyze the relationship in detail. We found that the anchor position of the long loops had lower average DNA methylation levels than standard loop anchors and very often overlapped with DNA methylation canyons. Canyons are typically decorated with either active or repressive histone marks. We considered whether a particular group of canyons was associated with the long loops. Our findings further indicate that repressed regions marked by the polycomb-mediated histone modification H3K27me3 at DNA methylation canyons generally mediate the formation of canyon loops. Next, we considered whether the long loops associated with repressive grand canyons that we had annotated in HSPCs were present in other cell types. Using Aggregate Peak Analysis (APA), a computational strategy in which the Hi-C submatrices from the vicinity of multiple putative loops are superimposed, we examined 19 human cell types and 10 murine cell types in which loop-resolution Hi-C maps are available. Interestingly, unlike previously characterized genomic subcompartments, these long-range loops are only present in stem and progenitor cells, but not in differentiated cell types, such as T cells and erythroid progenitors (Fig. 1d). Further, we identified one particular loop anchor that lay at the anchor of a long loop and contained no apparent genes ("geneless" canyon, or "GLS"). The GLS harboring this anchor is 17 kb long, lies 1.4 Mb upstream of the HOXA1 gene, and forms long loops with a 28 kb grand canyon in the HOXA region. In order to understand the role of the GLS region in hematopoietic stem cells (HSCs), we deleted the GLS in HSPCs using Cas9-mediated editing and assayed the edited cells for their ability to form colonies. Strikingly, after deleting the GLS, the number of colonies and their size was greatly reduced in edited cells compared to control experiments using either random guide RNAs or electroporation only (Fig. 1e). After ex vivo culture, the overwhelming majority of GLS-knock out HSPCs acquired the marker CD38, indicating that they were differentiating. Similarly, HOXA gene expression, an indicator of HSPC function, was greatly diminished after GLS deletion compared to control cells. These data indicate that the GLS identified in our study is functionally associated with maintenance of the HSC state. Overall, our work reveals long-range interactions between H3K27me3-marked DNA methylation canyons comprising a novel microcompartment associated with cellular identity. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 6-16 ◽  
Author(s):  
E. V. Sotnezova ◽  
E. R. Andreeva ◽  
A. I. Grigoriev ◽  
L. B. Buravkova

Transplantation of umbilical cord blood cells is currently widely used in modern cell therapy. However, the limited number of hematopoietic stem and progenitor cells (HSPCs) and prolonged time of recovery after the transplantation are significant limitations in the use of cord blood. Ex vivo expansion with various cytokine combinations is one of the most common approaches for increasing the number of HSPCs from one cord blood unit. In addition, there are protocols that enable ex vivo amplification of cord blood cells based on native hematopoietic microenvironmental cues, including stromal components and the tissue-relevant oxygen level. The newest techniques for ex vivo expansion of HSPCs are based on data from the elucidation of the molecular mechanisms governing the hematopoietic niche function. Application of these methods has provided an improvement of several important clinical outcomes. Alternative methods of cord blood transplantation enhancement based on optimization of HPSC homing and engraftment in patient tissues have also been successful. The goal of the present review is to analyze recent methodological approaches to cord blood HSPC ex vivo amplification.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.


2020 ◽  
Author(s):  
Raymond F. Robledo ◽  
Steven L. Ciciotte ◽  
Joel H. Graber ◽  
Yue Zhao ◽  
Amy J. Lambert ◽  
...  

AbstractStudies of the severely pancytopenic scat mouse model first demonstrated the crucial role of RASA3, a dual RAS and RAP GTPase activating protein (GAP), in hematopoiesis. RASA3 is required for survival in utero; germline deletion is lethal at E12.5-13.5 due to severe hemorrhage and decreased fetal liver erythropoiesis. Conditional deletion in hematopoietic stem and progenitor cells (HSPCs) using Vav-Cre recapitulates the null phenotype demonstrating that RASA3 is required at the stem and progenitor level to maintain blood vessel development and integrity and effective blood production. In adults, bone marrow blood cell production and spleen stress erythropoiesis are suppressed significantly upon induction of RASA3 deficiency, leading to pancytopenia and death within two weeks. Notably, RASA3 missense mutations in mouse models scat (G125V) and hlb381 (H794L) show dramatically different hematopoietic consequences specific to both genetic background and molecular variant. Global transcriptomic studies in scat suggest potential targets to ameliorate disease progression.Author SummaryHematopoiesis is the process by which blood cells are formed. The individual must have a normal complement of red blood cells to prevent anemia, platelets to control bleeding, and white blood cells to maintain immune functions. All blood cells are derived from hematopoietic stem cells that differentiate into progenitor cells that then develop into mature circulating cells. We studied several mouse strains carrying different mutations in RASA3. We show that RASA3 is required at the earliest stages of blood formation, the stem and progenitor cells, and that the complement of genes other than RASA3, or the genetic background of the mutant strain, profoundly alters the overall effect on blood formation. Further, the molecular nature of the mutation in RASA3 also has a profound and independent effect on overall blood formation. One strain, designated scat, suffers cyclic anemia characterized by severe anemic crisis episodes interspersed with remissions where the anemia significantly improves. Comparison of scat crisis and remission hematopoietic stem and progenitor cells reveals striking differences in gene expression. Analyses of these expression differences provide clues to processes that potentially drive improvement of anemia in scat and provide new avenues to pursue in future studies to identify novel therapeutics for anemia.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 804
Author(s):  
Tomas Knotek ◽  
Lucie Janeckova ◽  
Jan Kriska ◽  
Vladimir Korinek ◽  
Miroslava Anderova

Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway’s impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.


Sign in / Sign up

Export Citation Format

Share Document