scholarly journals Protective Effects of the Flavonoid Chrysin against Methylmercury-Induced Genotoxicity and Alterations of Antioxidant Status,In Vivo

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Eduardo Scandinari Manzolli ◽  
Juliana Mara Serpeloni ◽  
Denise Grotto ◽  
Jairo Kennup Bastos ◽  
Lusânia Maria Greggi Antunes ◽  
...  

The use of phytochemicals has been widely used as inexpensive approach for prevention of diseases related to oxidative damage due to its antioxidant properties. One of dietary flavonoids is chrysin (CR), found mainly in passion fruit, honey, and propolis. Methylmercury (MeHg) is a toxic metal whose main toxic mechanism is oxidative damage. Thus, the study aimed to evaluate the antioxidant effects of CR against oxidative damage induced by MeHg in Wistar rats. Animals were treated with MeHg (30 µg/kg/bw) in presence and absence of CR (0.10, 1.0, and 10 mg/kg/bw) by gavage for 45 days. Glutathione (GSH) in blood was quantified spectrophotometrically and for monitoring of DNA damage, comet assay was used in leukocytes and hepatocytes. MeHg led to a significant increase in the formation of comets; when the animals were exposed to the metal in the presence of CR, higher concentrations of CR showed protective effects. Moreover, exposure to MeHg decreased the levels of GSH and GSH levels were restored in the animals that received CR plus MeHg. Taken together the findings of the present work indicate that consumption of flavonoids such as CR may protect humans against the adverse health effects caused by MeHg.

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2502 ◽  
Author(s):  
Joanna Tkaczewska ◽  
Ewelina Jamróz ◽  
Ewa Piątkowska ◽  
Barbara Borczak ◽  
Joanna Kapusta-Duch ◽  
...  

Carp skin gelatine hydrolysate (CSGH) may be a possible bioactive peptide source, as promising antioxidant properties have been noted during in vivo testing. Hence, the present study focused on improving the bioavailability of the antioxidant peptides from CSGH and on the use of furcellaran (FUR), which can protect the biopeptides during digestion in the gastrointestinal tract. Therefore, in this study, microcapsules coated with furcellaran and containing CSGH cores were prepared. The structural properties of the sample were determined using FT-IR and SEM analysis. The antioxidant properties of hydrolysate, uncoated, and encapsulated samples were investigated. In vivo analysis included determination of its safety in an animal organism and evaluation of the lipid profile, antioxidant blood status, and mRNA expression of some genes involved in antioxidant status in Wistar rats. The results showed no adverse effects of microencapsulated protein hydrolysates in laboratory animals. Nonetheless, there was a statistically significant rise in the level of total antioxidant status blood serum among animals consuming CSGH and not inducing oxidative stress. This can be viewed as a promising indication of the positive effects of antioxidant properties tested in vivo. The process of CSGH microencapsulation in FUR cause a decrease in antioxidant hydrolysate activity, both in vitro, as well as in healthy Wistar rats. When considering the results of the presented diverse therapeutic potential, further research on CSGH being a potential bioactive peptide source used as a functional food or nutraceutical, but with a different microencapsulation coating, is encouraged.


2021 ◽  
Vol 22 (13) ◽  
pp. 6946
Author(s):  
Weishun Tian ◽  
Suyoung Heo ◽  
Dae-Woon Kim ◽  
In-Shik Kim ◽  
Dongchoon Ahn ◽  
...  

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Iwona Zwolak

Vanadium (V) in its inorganic forms is a toxic metal and a potent environmental and occupational pollutant and has been reported to induce toxic effects in animals and people. In vivo and in vitro data show that high levels of reactive oxygen species are often implicated in vanadium deleterious effects. Since many dietary (exogenous) antioxidants are known to upregulate the intrinsic antioxidant system and ameliorate oxidative stress-related disorders, this review evaluates their effectiveness in the treatment of vanadium-induced toxicity. Collected data, mostly from animal studies, suggest that dietary antioxidants including ascorbic acid, vitamin E, polyphenols, phytosterols, and extracts from medicinal plants can bring a beneficial effect in vanadium toxicity. These findings show potential preventive effects of dietary antioxidants on vanadium-induced oxidative stress, DNA damage, neurotoxicity, testicular toxicity, and kidney damage. The relevant mechanistic insights of these events are discussed. In summary, the results of studies on the role of dietary antioxidants in vanadium toxicology appear encouraging enough to merit further investigations.


Life Sciences ◽  
2004 ◽  
Vol 75 (10) ◽  
pp. 1263-1276 ◽  
Author(s):  
Juana Benedı́ ◽  
Rocio Arroyo ◽  
Carmen Romero ◽  
Sagrario Martı́n-Aragón ◽  
Angel M Villar

Author(s):  
Songul Cetik Yildiz ◽  
Cumali Keskin ◽  
Adnan Ayhanci

The aim of this study was to investigate in-vitro antioxidant properties and in-vivo protective effects of different concentrations of Hypericum triquetrifolium Turra. (HT) seed methanol extracts against acute hepatotoxicity, myelotoxicity and hematotoxicity in rats exposed to overdose of cyclophosphamide (CP). HT seed methanol extracts were tested in view of its in-vitro antioxidant activities as total phenolic contents and DPPH free radical-scavenging activity. To investigate in-vivo protective effects of HT seed methanol extracts on rat tissues; tested animals were divided into nine groups. Three groups only were treated with HT extracts (25, 50 and 100 mg/kg HT) for 6 days. Three groups were pre-treated with the extract of HT (25, 50 and 100 mg/kg HT) for 6 days and on the last day they were injected with single dose of CP (150-mg/kg body weight). Two groups were used as control groups and one group was only treated with CP (150 mg/kg) on the 6th day. The toxic effects of CP and protective effects of HT extracts on the nucleated cells which were produced by bone marrow and serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), oxidative stress index (OSI) levels were investigated biochemically. Additionally, liver tissue samples were examined histopathologically. Our results show that HT seed methanol extract has high total phenolic content and antioxidant activity. Over dose CP administration caused hepatotoxicity, myelotoxicity and hematotoxicity on rat. Whereas, 25, 50 and 100 mg/kg HT plus CP administered groups showed significant protective effects on nucleated cells. And 25, 50, 100 mg/kg HT plus CP treated groups showed an important decrease on serum ALT, ALP, LDH and OSI levels when compared with CP treated group. Our results showed that the administration of different HT doses with high doses of CP significantly reduced hepatotoxicity, myelotoxicity and hematoxicity on rats.


2014 ◽  
Vol 7 (4) ◽  
pp. 184-188 ◽  
Author(s):  
Roman Moravčík ◽  
Monika Okuliarová ◽  
Elena Kováčová ◽  
Michal Zeman

ABSTRACT Diquat dibromide is a moderately toxic contact herbicide belonging to the bipyridyl group of redox-active compounds that induce a strong oxidative damage. Melatonin (MEL) can protect against oxidative damage under in vivo conditions, probably through its antioxidative capacity and ability to induce expression of anti-oxidative enzymes. The objective of this study was to investigate effects of diquat on viability of Vero and HeLa cells and possible protective effects of MEL and its analogue 2,3-dihydromelatonin (DMEL). Cell viability was evaluated with the MTT test. First, we analyzed dose-dependent effects of diquat on cell viability using the concentration range of 0.1-100 μM. Second, we used the diquat dose which reduced cell viability by 50% and treated cells with either MEL or DMEL (both in the concentration range of 1-100 μM) in the presence or absence of diquat. In addition, effects of both diquat and MEL on oxidative stress in HeLa cells were measured by flow cytometry using 2’,7’-dichlorofluorescin diacetate. We confirmed the expected negative effects of diquat on viability of Vero and HeLa cells. Melatonin and DMEL were able to prevent diquat reduced viability of Vero cells in rather low concentrations (1 μM) and DMEL exerted substantially stronger protective effects than MEL. However in HeLa cells, we did not find the same effects and MEL even reduced their viability. Moreover, treatment of HeLa cells with high concentrations of MEL (100 μM) exaggerated the pro-oxidative effects of diquat. The results suggest that in addition to the expected anti-oxidative effects, MEL exerts a pro-oxidative action which is cell type and dose dependent


Sign in / Sign up

Export Citation Format

Share Document