scholarly journals Protective Effects of Dietary Antioxidants against Vanadium-Induced Toxicity: A Review

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Iwona Zwolak

Vanadium (V) in its inorganic forms is a toxic metal and a potent environmental and occupational pollutant and has been reported to induce toxic effects in animals and people. In vivo and in vitro data show that high levels of reactive oxygen species are often implicated in vanadium deleterious effects. Since many dietary (exogenous) antioxidants are known to upregulate the intrinsic antioxidant system and ameliorate oxidative stress-related disorders, this review evaluates their effectiveness in the treatment of vanadium-induced toxicity. Collected data, mostly from animal studies, suggest that dietary antioxidants including ascorbic acid, vitamin E, polyphenols, phytosterols, and extracts from medicinal plants can bring a beneficial effect in vanadium toxicity. These findings show potential preventive effects of dietary antioxidants on vanadium-induced oxidative stress, DNA damage, neurotoxicity, testicular toxicity, and kidney damage. The relevant mechanistic insights of these events are discussed. In summary, the results of studies on the role of dietary antioxidants in vanadium toxicology appear encouraging enough to merit further investigations.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang Mu ◽  
Huang-Guan Dai ◽  
Ling-Bo Luo ◽  
Jing Yang

Abstract Background Infertility is a common complication in obese men. Oxidative stress and testicular apoptosis play critical roles in obesity-induced spermatogenesis dysfunction. It has been reported that irisin, an exercise-induced myokine, may attenuate oxidative damage and testicular apoptosis in several diseases; however, its role in obesity-induced spermatogenesis dysfunction remains unclear. The purpose of this study was to investigate the role and underlying mechanism of irisin in obesity-induced dysfunction of spermatogenesis. Methods Male mice were fed a high-fat diet (HFD) for 24 weeks to establish a model of obesity-induced spermatogenesis dysfunction. To explore the effects of irisin, mice were subcutaneously infused with recombinant irisin for 8 weeks beginning at 16 weeks after starting a HFD. To confirm the role of AMP-activated protein kinase α (AMPKα), AMPKα-deficient mice were used. Results The data showed decreased serum irisin levels in obese patients, which was negatively correlated with sperm count and progressive motility. Irisin was downregulated in the plasma and testes of obese mice. Supplementation with irisin protected against HFD-induced spermatogenesis dysfunction and increased testosterone levels in mice. HFD-induced oxidative stress, endoplasmic reticulum (ER) stress and testicular apoptosis were largely attenuated by irisin treatment. Mechanistically, we identified that irisin activated the AMPKα signalling pathway. With AMPKα depletion, we found that the protective effects of irisin on spermatogenesis dysfunction were abolished in vivo and in vitro. Conclusions In conclusion, we found that irisin alleviated obesity-related spermatogenesis dysfunction via activation of the AMPKα signalling pathway. Based on these findings, we hypothesized that irisin is a potential therapeutic agent against obesity-related spermatogenesis dysfunction.


2010 ◽  
Vol 299 (5) ◽  
pp. F1120-F1133 ◽  
Author(s):  
Imari Mimura ◽  
Masaomi Nangaku ◽  
Hiroshi Nishi ◽  
Reiko Inagi ◽  
Tetsuhiro Tanaka ◽  
...  

Cytoglobin (Cygb), a novel member of the globin superfamily, is expressed by fibroblasts in various organs. However, its function remains unknown. Because of its localization, we speculated that a biological role of Cygb may be related to fibrogenesis. To clarify the role of Cygb in kidney fibrosis, we employed the remnant kidney model in rats. Immunohistochemical analysis showed an increase in Cygb expression in parallel with disease progression. To investigate the functional consequence of Cygb upregulation, we established transgenic rats overexpressing rat Cygb. Overexpression of Cygb improved histological injury, preserved renal function, and ameliorated fibrosis, as estimated by the accumulation of collagen I and IV as well as Masson trichrome staining. These protective effects of Cygb were associated with a decrease in nitrotyrosine deposition in the kidney and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) excretion as a marker of oxidative stress. We also performed in vitro studies utilizing a rat kidney fibroblast cell line transiently overexpressing Cygb, an inducible kidney cell transfected with Cygb, and primary cultured fibroblasts isolated from the kidneys of the transgenic rats. These different experimental systems consistently showed that Cygb inhibited collagen synthesis. Furthermore, mutant disruption of heme in Cygb that impaired its antioxidant properties led to the loss of antifibrotic effects, suggesting that Cygb reduces fibrosis via a radical scavenging function. In conclusion, we showed that Cygb plays an important role in protection of the kidney against fibrosis via the amelioration of oxidative stress both in vitro and in vivo. Cygb might represent a good therapeutic target in chronic kidney disease.


Author(s):  
Bharat Kwatra

The present review is based mainly on papers published between 2000 and 2011 and gives information about the properties of the carotenoid lycopene in chemical and biological systems and its possible role in preventing cardiovascular diseases (CVD). The main aim of this report is to highlight its role as an antioxidant, also reported are bioactive properties that may influence the development of foam cells and protection against endothelial cell damage. The paper will also examine recent observations that lycopene may improve blood flow and reduce inflammatory responses. Lycopene possesses antioxidant properties in vitro, and some epidemiological studies have reported protective effects against the progression of CVD. The oxidation of human low density lipoproteins (LDL) is a fundamental mechanism in the initiation of atherosclerosis. A beneficial role of lycopene as antioxidant in the prevention of CVD is suggested but the data are still controversial. Lycopene is believed to be the most potent carotenoid antioxidant in vitro. Tissue culture experiments and animal studies support potential cardioprotective effects for lycopene and other carotenoids in the blood. Most studies showed beneficial effects of lycopene to individuals who are antioxidant-deficient like elderly patients, or humans exposed to higher levels of oxidative stress like smokers, diabetics, hemodialysis patients and acute myocardial infarction patients. By defining the right population and combining antioxidant potentials of lycopene with vitamins and other bioactive plant compounds, the beneficial role of lycopene in CVD can be clarified in future studies. Keywords: Atherosclerosis, isomerization, in vitro, in vivo, LDL oxidatin


2021 ◽  
Vol 22 (11) ◽  
pp. 5705
Author(s):  
Karolina Szewczyk-Golec ◽  
Marta Pawłowska ◽  
Roland Wesołowski ◽  
Marcin Wróblewski ◽  
Celestyna Mila-Kierzenkowska

Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.


1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


2022 ◽  
Author(s):  
Zhao Huang ◽  
Li Zhou ◽  
Jiufei Duan ◽  
Siyuan Qin ◽  
Yu Wang ◽  
...  

Abstract Loss of E-cadherin (ECAD), often caused by epigenetic inactivation, is closely associated with tumor metastasis. However, how ECAD is regulated in response to oxidative stress during tumorigenesis is largely unknown. Here we identify RNF25 as a new E3 ligase of ECAD, whose activation by oxidative stress leads to ECAD protein degradation in hepatocellular carcinoma (HCC). Loss of ECAD activates YAP, which in turn promotes the transcription of RNF25, thus forming a positive feedback loop to sustain the ECAD downregulation. YAP activation mitigates oxidative stress in detached HCC cells by upregulating antioxidant genes, protecting detached HCC cells from ferroptosis, resulting in anoikis resistance. Mechanistically, we found that protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344, which increases its kinase activity towards RNF25 phosphorylation at Ser450, facilitating RNF25-mediated degradation of ECAD. Moreover, RNF25 expression is associated with HCC metastasis and depletion of RNF25 is sufficient to diminish HCC invasion and metastasis in vitro and in vivo. Together, these results identify a dual role of RNF25 as a critical regulator of ECAD protein turnover, promoting both anoikis resistance and metastasis, and PKA is a necessary redox sensor to enable this process. Our study provides mechanistic insight into how tumor cells sense oxidative stress signals to spread while escaping cell death.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Kaifeng Li ◽  
Mengen Zhai ◽  
Liqing Jiang ◽  
Fan Song ◽  
Bin Zhang ◽  
...  

Hyperglycemia-induced oxidative stress and fibrosis play a crucial role in the development of diabetic cardiomyopathy (DCM). Tetrahydrocurcumin (THC), a major bioactive metabolite of natural antioxidant curcumin, is reported to exert even more effective antioxidative and superior antifibrotic properties as well as anti-inflammatory and antidiabetic abilities. This study was designed to investigate the potential protective effects of THC on experimental DCM and its underlying mechanisms, pointing to the role of high glucose-induced oxidative stress and interrelated fibrosis. In STZ-induced diabetic mice, oral administration of THC (120 mg/kg/d) for 12 weeks significantly improved the cardiac function and ameliorated myocardial fibrosis and cardiac hypertrophy, accompanied by reduced reactive oxygen species (ROS) generation. Mechanically, THC administration remarkably increased the expression of the SIRT1 signaling pathway both in vitro and in vivo, further evidenced by decreased downstream molecule Ac-SOD2 and enhanced deacetylated production SOD2, which finally strengthened antioxidative stress capacity proven by repaired activities of SOD and GSH-Px and reduced MDA production. Additionally, THC treatment accomplished its antifibrotic effect by depressing the ROS-induced TGFβ1/Smad3 signaling pathway followed by reduced expression of cardiac fibrotic markers α-SMA, collagen I, and collagen III. Collectively, these finds demonstrated the therapeutic potential of THC treatment to alleviate DCM mainly by attenuating hyperglycemia-induced oxidative stress and fibrosis via activating the SIRT1 pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


2007 ◽  
Vol 292 (4) ◽  
pp. L924-L935 ◽  
Author(s):  
Anna A. Birukova ◽  
Panfeng Fu ◽  
Santipongse Chatchavalvanich ◽  
Dylan Burdette ◽  
Olga Oskolkova ◽  
...  

We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.


2018 ◽  
Vol 37 (12) ◽  
pp. 1268-1281 ◽  
Author(s):  
A Ahangarpour ◽  
S Alboghobeish ◽  
AA Oroojan ◽  
MA Dehghani

The growing use of carbon nanotubes (CNTs) emphasizes the importance of its potential toxic effects on the human health. Previous studies proved that CNTs caused oxidative stress and decreased cell viability. On the other hand, reactive oxygen species (ROS) and oxidative stress impaired β-cell functions and reduced the insulin secretion. However, there is not any study on the effects of CNTs on islets and β-cells. Therefore, the present study aimed to evaluate the effects of single-walled CNTs (SWCNTs) on oxidative stress in islets in addition to the protective effects of naringin (NRG) as an antioxidant . We examined the effects of SWCNTs and naringin on islets by 3,4 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay; measurement of insulin secretion, ROS, and malondialdehyde (MDA); activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) peroxidase (GSH-Px); and content of GSH and mitochondrial membrane potential (MMP). The MTT assay demonstrated that decreased viability of islets cells was dose-dependent with exposure to SWCNTs. Further studies revealed that SWCNTs decreased insulin secretion and MMP, induced the formation of ROS, increased the level of MDA, and decreased the activities of SOD, GSH-Px, and CAT and content of GSH. Furthermore, the pretreatment of islets with naringin significantly reverted back these changes. These findings revealed that SWCNTs might induce the oxidative stress to pancreatic islets, causing the occurrence of diabetes, and the protective effects of naringin that was mediated by augmentation of the antioxidant defense system of islets. Our research indicated the necessity for further in vivo and in vitro researches on the effects of SWCNTs and naringin on diabetes.


Sign in / Sign up

Export Citation Format

Share Document