scholarly journals Horseradish Peroxidase-Carrying Electrospun Nonwoven Fabrics for the Treatment of o-Methoxyphenol

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chao Pan ◽  
Ran Ding ◽  
Li Dong ◽  
Jing Wang ◽  
Yucai Hu

The carboxyl-functionalized polystyrene (poly(styrene-co-methacrylic acid), PSMAA) nanofibers with average diameters of 250 ± 20 nm was prepared by electrospinning. PSMAA nanofibrous membrane were employed for immobilization of horseradish peroxidase (HRP) enzyme on the fibrous surface by a chemical method. The parameters about immobilizing HRP on the PSMAA nanofibers were studied and the influence on the activity of the HRP is discussed. This study showed that soap-free emulsion method is an ideal technology to modify the polystyrene surface and ultimately achieve enzyme immobilization on electrospun PSMAA nanofibers surfaces. Compared with free HRP, the acid-base stability, thermal stability, and storage stability of HRP were increased after the immobilization. The immobilized HRP maintained about 60% of its initial activity during a 20-day storage period. However, the free HRP maintained only 40% of its initial activity. The removal percentages of o-methoxyphenol (OMP) reached 80.2% after 120 min for immobilized HRP. These results suggest that the proposed scheme for immobilization of HRP has potential in industrial applications for the treatment of phenolic wastewater.

Food Research ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 225-231
Author(s):  
F. Yeasmin ◽  
M.J. Khan ◽  
M.H. Riad

Diversification of food is the key factor for enhancing physicochemical properties, nutritional status and consumer satisfaction. Hence, mixed fruits jam was developed from coconut and pineapple pulps in varied ratios (1:1, 3:1 and 1:3). Moisture, lipid, protein, fiber, ash and total carbohydrate contents of different jam samples varied significantly (p≤0.05) and found values in the ranges 26.78-29.15%, 4.12-10.81%, 0.56-1.13%, 1.51- 3.12%, 0.30-0.37% and 62.69-67.91% respectively. Storage stability of the jam samples was analyzed for 6 months keeping under refrigerated (4°C) and room (30°C) temperatures. Physicochemical properties such as total soluble solids, acidity, pH and reducing sugar content were evaluated at 2-months intervals. The parameters were changed variedly due to compositional variances, packaging materials and storage temperatures. Total soluble solids, acidity and reducing sugar content increased gradually while pH declined upon extension of storage period. Sensory properties for color, taste, flavor, texture and overall acceptability of jam samples were tested where sample with pineapple and coconut in the ratio 3:1 showed the best result than others. Samples were also analyzed for yeast and mold count at the end of the storage period and positive result was found in case of samples packed in plastic containers kept under room temperature. The study yields diversified jam samples with better nutritional and sensory properties with satisfactory shelf life.


2019 ◽  
Vol 43 ◽  
Author(s):  
Wong Lok Yee ◽  
Chan Li Yee ◽  
Nyam Kar Lin ◽  
Pui Liew Phing

ABSTRACT Lactobacillus acidophilus NCFM (L-NCFM) was microencapsulated via co-extrusion technique with mannitol. Optimization of coating material, locust bean gum (0% to 2%, w/v) and prebiotic, mannitol (0% to 5%, w/v) was tested on bead size and microencapsulation efficiency. L-NCFM cells microencapsulated in three different forms were tested in simulated gastric juice (pH 2.0) and simulated intestinal juice (pH 7.5) and storage test at 4 °C and 25 °C for 4 weeks. 0.5% (w/v) locust bean gum and 3% (w/v) of mannitol are the optimal concentrations to produce bead size of 570 µm, microencapsulation efficiency of 96.81% and cell count 8.92 log CFU/mL. Microencapsulation of L-NCFM with mannitol protect cells better in acidic environment. The viability of encapsulated L-NCFM with mannitol at 4 °C throughout the storage period for 30 days ranged from 8.62 log cfu/mL to 6.80 log cfu/mL, which met the minimum required for probiotic (106CFU/mL).


2014 ◽  
Vol 10 (3) ◽  
pp. 2478-2483 ◽  
Author(s):  
Mohamed A. Abd-Elhakeem ◽  
Ahmed M. Elsayed ◽  
Taher A. Alkhulaqi

Fe3O4 (magnetite) nanoparticles were prepared by coprecipitation method, coated by chitosan and functionalized by glutaraldehyde. Lipase enzyme from Candida rugosa was immobilized on the prepared particles via cross linking reaction. Synthesis steps and characterization were examined by XRD, TEM, and FTIR.  The immobilization conditions were 10 mL of phosphate buffer (0.1 M, pH 6.5) containing 30 mg of  functionalized magnetic chitosan nanoparticles and 2.0 mg·mL-1 of lipase, immobilization temperature of 4 ℃ and immobilization time of 1 h. Under these conditions, lipase was successfully immobilized with loading capacity of 87 mg/g. The immobilized enzyme showed good operational and storage stability, where it remained stable after 30 days of storage at 4◦C.and retained about 61% of its initial activity after twenty repeated uses. Finally enzymatic catalyze synthesis of butyl and hexyl oleate at 40 ◦C with shaking (200 rpm) was realized in n-hexane and confirmed by GC analysis.


2021 ◽  
Vol 11 (17) ◽  
pp. 8216
Author(s):  
Norah Salem Alsaiari ◽  
Abdelfattah Amari ◽  
Khadijah Mohammedsaleh Katubi ◽  
Fatimah Mohammed Alzahrani ◽  
Hamed N. Harharah ◽  
...  

Free laccase has limitations for its use in industrial applications that require laccase immobilization on proper support, to improve its catalytic activity. Herein, the nanoparticles of magnetic iron oxide (Fe3O4) and copper ferrite (CuFe2O4) were successfully used as support for the immobilization of free laccase, using glutaraldehyde as a cross-linker. The immobilization conditions of laccase on the surface of nanoparticles were optimized to reach the maximum activity of the immobilized enzyme. The synthesized free nanoparticles and the nanoparticle-immobilized laccase were characterized using different techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). CuFe2O4 nanoparticles, as support, enhanced laccase activity compared to free laccase and Fe3O4 nanoparticle-immobilized laccase that appeared during the study of pH, temperature, and storage stability on free and immobilized laccase. The CuFe2O4 and Fe3O4 nanoparticle-immobilized laccase showed superior activity in a wide pH range, temperature range, and storage period, up to 20 days at 4.0 °C, when compared to free laccase. Additionally, the synthesized nanobiocatalysts were examined and optimized for the biodegradation of the anionic dye Direct Red 23 (DR23). HPLC analysis was used to confirm the dye degradation. The reusability of immobilized laccases for the biodegradation of DR23 dye was investigated for up to six successive cycles, with a decolorization efficiency over 70.0%, which indicated good reusability and excellent stability.


2011 ◽  
Vol 63 (8) ◽  
pp. 1621-1628 ◽  
Author(s):  
W. Liu ◽  
W. C. Wang ◽  
H. S. Li ◽  
X. Zhou

Horseradish peroxidase (HRP) is proved being effective in eliminating oil from aqueous solutions, but the elimination is expensive because free HRP can not be reused. In present work, HRP was successfully immobilized on cordierite porous ceramics support with a novel method of N-β-aminoethyl-γ-aminopropyl-trimethoxysilane modification and glutaraldehyde activation. Under the optimized immobilized conditions, the actual immobilized HRP was 1.16 mg/g support, the activity of the immobilized HRP could reach as high as 1379.4 U/g support. Experiment results showed that the properties of storage stability, acid-base stability and the tolerance to the pH fluctuation of the immobilized HRP were better than those of the free HRP. The operation stability of the immobilized HRP was also good. The immobilized HRP is suitable for the oily wastewater treatment because of its reusability proved in this work.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 301
Author(s):  
Xingjia Li ◽  
Zhi Shi ◽  
Xiuli Zhang ◽  
Xiangjian Meng ◽  
Zhiqiang Huang ◽  
...  

The effect of testing temperature and storage period on the polarization fatigue properties of poly (vinylidene fluoride-trifluoroethylene) (P(VDF–TrFE)) ultrathin film devices were investigated. The experimental results show that, even after stored in air for 150 days, the relative remanent polarization (Pr/Pr(0)) of P(VDF–TrFE) of ultrathin films can keep at a relatively high level of 0.80 at 25 °C and 0.70 at 60 °C. To account for this result, a hydrogen fluoride (HF) formation inhibition mechanism was proposed, which correlated the testing temperature and the storage period with the microstructure of P(VDF–TrFE) molecular chain. Moreover, a theoretical model was constructed to describe the polarization fatigue evolution of P(VDF–TrFE) samples.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1664
Author(s):  
A. A. Oyekanmi ◽  
U. Seeta Uthaya Kumar ◽  
Abdul Khalil H. P. S. ◽  
N. G. Olaiya ◽  
A. A. Amirul ◽  
...  

Antimicrobial irradiated seaweed–neem biocomposite films were synthesized in this study. The storage functional properties of the films were investigated. Characterization of the prepared films was conducted using SEM, FT-IR, contact angle, and antimicrobial test. The macroscopic and microscopic including the analysis of the functional group and the gas chromatography-mass spectrometry test revealed the main active constituents present in the neem extract, which was used an essential component of the fabricated films. Neem leaves’ extracts with 5% w/w concentration were incorporated into the matrix of seaweed biopolymer and the seaweed–neem bio-composite film were irradiated with different dosages of gamma radiation (0.5, 1, 1.5, and 2 kGy). The tensile, thermal, and the antimicrobial properties of the films were studied. The results revealed that the irradiated films exhibited improved functional properties compared to the control film at 1.5 kGy radiation dosage. The tensile strength, tensile modulus, and toughness exhibited by the films increased, while the elongation of the irradiated bio-composite film decreased compared to the control film. The morphology of the irradiated films demonstrated a smoother surface compared to the control and provided surface intermolecular interaction of the neem–seaweed matrix. The film indicated an optimum storage stability under ambient conditions and demonstrated no significant changes in the visual appearance. However, an increase in the moisture content was exhibited by the film, and the hydrophobic properties was retained until nine months of the storage period. The study of the films antimicrobial activities against Staphylococcus aureus (SA), and Bacillus subtilis (BS) indicated improved resistance to bacterial activities after the incorporation of neem leaves extract and gamma irradiation. The fabricated irradiated seaweed–neem bio-composite film could be used as an excellent sustainable packaging material due to its effective storage stability.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2339
Author(s):  
So-Yul Yun ◽  
Jee-Young Imm

Age gelation is a major quality defect in ultra-high-temperature (UHT) pasteurized milk during extended storage. Changes in plasmin (PL)-induced sedimentation were investigated during storage (23 °C and 37 °C, four weeks) of UHT skim milk treated with PL (2.5, 10, and 15 U/L). The increase in particle size and broadening of the particle size distribution of samples during storage were dependent on the PL concentration, storage period, and storage temperature. Sediment analysis indicated that elevated storage temperature accelerated protein sedimentation. The initial PL concentration was positively correlated with the amount of protein sediment in samples stored at 23 °C for four weeks (r = 0.615; p < 0.01), whereas this correlation was negative in samples stored at 37 °C for the same time (r = −0.358; p < 0.01) due to extensive proteolysis. SDS-PAGE revealed that whey proteins remained soluble over storage at 23 °C for four weeks, but they mostly disappeared from the soluble phase of PL-added samples after two weeks’ storage at 37 °C. Transmission electron micrographs of PL-containing UHT skim milk during storage at different temperatures supported the trend of sediment analysis well. Based on the Fourier transform infrared spectra of UHT skim milk stored at 23 °C for three weeks, PL-induced particle size enlargement was due to protein aggregation and the formation of intermolecular β-sheet structures, which contributed to casein destabilization, leading to sediment formation.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1397
Author(s):  
Nappaphan Kunanusont ◽  
Boonchai Sangpetngam ◽  
Anongnat Somwangthanaroj

Plastic waste has been incorporated with asphalt to improve the physical properties of asphalt and alleviate the increasing trend of plastic waste being introduced into the environment. However, plastic waste comes in different types such as thermoplastic or thermoset, which results in varied properties of polymer modified asphalt (PMA). In this work, four thermoplastic vulcanizates (TPVs) were prepared using different peroxide concentrations to produce four formulations of gel content (with varying extent of crosslinked part) in order to imitate the variation of plastic waste. All four TPVs were then mixed with asphalt at 5 wt% thus producing four formulations of PMA, which went through physical, rheological, and storage stability assessments. PMA with higher gel content possessed lower penetration and higher softening temperature, indicating physically harder appearance of PMA. Superpave parameters remained unchanged among different gel content PMA at temperatures of 64, 70, and 76 °C. PMA with any level of gel content had lower Brookfield viscosity than PMA without gel content at a temperature of 135 °C. Higher gel content resulted in shorter storage stability measured with greater different softening temperatures between top and bottom layers of PMA after 5 days of 163 °C storage. This study shows that asphalt with thermoset plastic waste is harder and easier to pave, thus making the non-recycling thermoset plastic waste more useful and friendly to the environment.


Sign in / Sign up

Export Citation Format

Share Document