scholarly journals Carqueja (Baccharis trimera) Protects against Oxidative Stress andβ-Amyloid-Induced Toxicity inCaenorhabditis elegans

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Franciny Aparecida Paiva ◽  
Larissa de Freitas Bonomo ◽  
Patrícia Ferreira Boasquivis ◽  
Igor Thadeu Borges Raposo de Paula ◽  
Joyce Ferreira da Costa Guerra ◽  
...  

Carqueja (Baccharis trimera) is a native plant found throughout South America. Several studies have shown that Carqueja has antioxidant activityin vitro, as well as anti-inflammatory, antidiabetic, analgesic, antihepatotoxic, and antimutagenic properties. However, studies regarding its antioxidant potentialin vivoare limited. In this study, we usedCaenorhabditis elegansas a model to examine the antioxidant effects of a Carqueja hydroalcoholic extract (CHE) on stress resistance and lifespan and to investigate whether CHE has a protective effect in aC. elegansmodel for Alzheimer's disease. Here, we show for the first time, usingin vivoassays, that CHE treatment improved oxidative stress resistance by increasing survival rate and by reducing ROS levels under oxidative stress conditions independently of the stress-related signaling pathways (p38, JNK, and ERK) and transcription factors (SKN-1/Nrf and DAF-16/Foxo) tested here. CHE treatment also increased the defenses againstβ-amyloid toxicity inC. elegans, in part by increasing proteasome activity and the expression of two heat shock protein genes. Our findings suggest a potential neuroprotective use for Carqueja, supporting the idea that dietary antioxidants are a promising approach to boost the defensive systems against stress and neurodegeneration.

2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Fujie Yan ◽  
Yushu Chen ◽  
Ramila Azat ◽  
Xiaodong Zheng

Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ying Liu ◽  
Hongyuan Li ◽  
Yunfei Li ◽  
Min Yang ◽  
Xiaohui Wang ◽  
...  

Velvet antler is the traditional tonic food or medicine used in East Asia for treating aging-related diseases. Herein, we try to dissect the pharmacology of methanol extracts (MEs) of velvet antler on Parkinson’s disease (PD). Caenorhabditis elegans studies showed that MEs decreased the aggregation of α-synuclein and protected oxidative stress-induced DAergic neuron degeneration. In vitro cellular data indicated that MEs suppressed the LPS-induced MAPKs and NF-κB activation, therefore inhibiting overproduction of reactive oxygen species, nitric oxide, tumor necrosis factor-α, and interleukin-6; blocking microglia activation; and protecting DAergic neurons from the microglia-mediated neurotoxicity. In vivo MPTP-induced PD mouse investigations found that MEs prevented MPTP-induced neuron loss in the substantia nigra and improved the behavioral rotating rod performance in MPTP-treated mice by increasing the expression level of tyrosine hydroxylase (TH) and downregulating α-synuclein protein expression. In all, these results demonstrate that MEs ameliorate PD by inhibiting oxidative stress and neuroinflammation.


2021 ◽  
Vol 16 (10) ◽  
pp. 198-206
Author(s):  
Kiran Singh ◽  
Shweta Yadav

Owing to ubiquitous distribution, high abundances and ecological relevance, Caenorhabditis elegans has strong potential interest as barometer of environment and human health. Ecotoxicological methods are used to evaluate the effect of various anthropogenic contaminants on the ecosystems that circumscribe both in-vivo and in-vitro toxicities to explore the pathways and mechanisms of toxicity and to set precise toxicity thresholds. The interest in C. elegans, as a model organism in toxicological studies, has increased over the past few decades. The enticement of C. elegans comes from the ease of metabolically active digestive, sensory, endocrine, neuromuscular, reproductive systems and genetic manipulation along with the ability to fluorescently label neuronal subtypes. The study reviews the competence of Caenorhabditis elegans as a potential model organism in various toxicity assays specifically neurotoxicity and oxidative stress.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Douglas Vieira Thomaz ◽  
Luanna Fernandes Peixoto ◽  
Thiago Sardinha de Oliveira ◽  
James Oluwagbamigbe Fajemiroye ◽  
Hiasmin Franciely da Silva Neri ◽  
...  

Eugenia dysenterica ex DC Mart. (Myrtaceae), popularly known as “cagaita,” is a Brazilian plant rich in polyphenols and other antioxidant compounds. Aiming to evaluate the potential use of cagaita in pathologies involving oxidative stress, such as neurodegenerative disorders, this study investigated its antioxidant potential and neuroprotective effect. Electrochemical approaches and aluminium-induced neurotoxicity were used to determine respectively in vitro and in vivo antioxidant properties of cagaita. Voltammetric experiments were carried out in a three-electrode system, whose working electrode consisted of glassy carbon. Male Swiss mice were administered with AlCl3 orally at a dose of 100 mg/kg/day and with cagaita leaf hydroalcoholic extract (CHE) at doses of 10, 100, and 300 mg/kg/day. The redox behavior of CHE presented similar features to that of quercetin, a widely known antioxidant standard. CHE prevented mouse memory impairment which resulted from aluminium intake. In addition, biochemical markers of oxidative stress (catalase, superoxide dismutase activity, and lipid peroxidation) were normalized by CHE treatment. The potential of CHE to prevent aluminium-induced neurotoxicity was reflected at the microscopic level, through the decrease of the number of eosinophilic necrosis phenotypes seen in treated groups. Moreover, the protective effect of CHE was similar to that of quercetin, which was taken as the standard. These findings showed that the CHE of cagaita leaves has a potential to protect the brain against oxidative-induced brain damage.


Author(s):  
Kitlangki Suchiang ◽  
Nitasha H Kayde

Background: Phlogacanthus thyrsiflorus Nees (P. thyrsiflorus) of Acanthaceae family is endogenous to sub-tropical Himalayas. It has been reported to be used traditionally in Jaintia tribe of Meghalaya, India for treatment of many ailments.Objectives: The aim was to detect the active compounds present in the leaves for evaluation of in vitro free radicals scavenging potentials. Leaves protective actions in vivo will be investigated using Caenorhabditis elegans (C. elegans) model system utilizing wild type and mutant strains and the phenomena of host-pathogens interactions.Materials and methods: Gas chromatography/ Mass spectrometry (GC/MS) was used for detection of different compounds present. The versatility of leaf extracts to scavenge different free radicals generated in vitro was assessed with different in vitro methods. Survival analysis of wild type and mutant strains C. elegans under enhanced pro-oxidants exposure was investigated in vivo. Fast killing assay was also performed to study the extracts modulatory activity on host C. elegans survival under pathogen Pseudomonas aeruginosa infection.Results:  Forty compounds were detected in methanolic fraction of the extract with variable percentages. Both aqueous and methanol extract possessed remarkable, versatile free radical scavenging activity irrespective of the types of free radical generated. The in vivo experiments are in compliance, with observable increased survival ability percentage of C. elegans under intense exogenous oxidative stress and pathogen infection.Conclusion: Our findings enlightened the different compounds present with versatility of P. thyrsiflorus in tackling different free radicals generated both in vitro and in vivo that highly support for its candidature as a good antioxidant source. Our findings may justify the historical relevance of this plant in herbal remedies that could form the basis for inquiry of new active principles.Keywords: Free radicals, Oxidative stress, Caenorhabditis elegans, Phlogacanthus thyrsiflorus, Phytochemicals


2019 ◽  
Vol 51 (11) ◽  
pp. 1-16 ◽  
Author(s):  
Wen-Ning Xu ◽  
Huo-Liang Zheng ◽  
Run-Ze Yang ◽  
Tao Liu ◽  
Wei Yu ◽  
...  

AbstractThe main pathological mechanism of intervertebral disc degeneration (IVDD) is the programmed apoptosis of nucleus pulposus (NP) cells. Oxidative stress is a significant cause of IVDD. Whether mitophagy is induced by strong oxidative stress in IVDD remains to be determined. This study aimed to investigate the relationship between oxidative stress and mitophagy and to better understand the mechanism of IVDD in vivo and in vitro. To this end, we obtained primary NP cells from the human NP and subsequently exposed them to TBHP. We observed that oxidative stress induced mitophagy to cause apoptosis in NP cells, and we suppressed mitophagy and found that NP cells were protected against apoptosis. Interestingly, TBHP resulted in mitophagy through the inhibition of the HIF-1α/NDUFA4L2 pathway. Therefore, the upregulation of mitochondrial NDUFA4L2 restricted mitophagy induced by oxidative stress. Furthermore, the expression levels of HIF-1α and NDUFA4L2 were decreased in human IVDD. In conclusion, these results demonstrated that the upregulation of NDUFA4L2 ameliorated the apoptosis of NP cells by repressing excessive mitophagy, which ultimately alleviated IVDD. These findings show for the first time that NDUFA4L2 and mitophagy may be potential therapeutic targets for IVDD.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
L. C. Cruz ◽  
J. E. S. Batista ◽  
A. P. P. Zemolin ◽  
M. E. M. Nunes ◽  
D. B. Lippert ◽  
...  

We characterized, for the first time, the quality and identity of Brazilian Pampa biome honey and its antioxidant propertiesin vitro(FRAP, DDPH and ABTS). The potential protective effect of honey against oxidative stress induced by iron (Fe) and paraquat, (PQ) in aDrosophila melanogastermodel (in vivo) was also tested. The results indicated that all honey samples tested showed antioxidant activityin vitro. Flies treated with honey showed increased lifespan and were protected against oxidative stress induced by Fe and PQ. Despite the high concentration of sugars in honey (approximately 70–80%), our results demonstrate a hypoglycemic-like effect of honey inDrosophila. Thus, this study demonstrates the high quality of Brazilian Pampa biome honey as well as its significant antioxidant activityin vitroandin vivo, pointing to the potential use of this natural product as an alternative in the therapy of oxidative stress-associated diseases.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Parinee Kittimongkolsuk ◽  
Nattaporn Pattarachotanant ◽  
Siriporn Chuchawankul ◽  
Michael Wink ◽  
Tewin Tencomnao

Despite the Tiger Milk Mushroom Lignosus rhinocerus (LR) having been used as a traditional medicine, little is known about the neuroprotective effects of LR extracts. This study aims to investigate the neuroprotective effect of three extracts of LR against glutamate-induced oxidative stress in mouse hippocampal (HT22) cells as well as to determine their effect in Caenorhabditis elegans. In vitro, we assessed the toxicity of three LR extracts (ethanol extract (LRE), cold-water extract (LRC) and hot-water extract (LRH)) and their protective activity by MTT assay, Annexin V-FITC/propidium iodide staining, Mitochondrial Membrane Potential (MMP) and intracellular ROS accumulation. Furthermore, we determined the expression of antioxidant genes (catalase (CAT), superoxide dismutase (SOD1 and SOD2) and glutathione peroxidase (GPx)) by qRT-PCR. In vivo, we investigated the neuroprotective effect of LRE, not only against an Aβ-induced deficit in chemotaxis behavior (Alzheimer model) but also against PolyQ40 formation (model for Morbus Huntington) in transgenic C. elegans. Only LRE significantly reduced both apoptosis and intracellular ROS levels and significantly increased the expression of antioxidant genes after glutamate-induced oxidative stress in HT22 cells. In addition, LRE significantly improved the Chemotaxis Index (CI) in C. elegans and significantly decreased PolyQ40 aggregation. Altogether, the LRE exhibited neuroprotective properties both in vitro and in vivo.


Author(s):  
Mohammad Mahdi Zangeneh ◽  
Fariba Najafi ◽  
Reza Tahvilian ◽  
Akram Zangeneh ◽  
Rohallah Moradi

Scrophularia striata (S. striata) is a native plant in Iran, which the plant has been used as an antioxidant, antifungal, antiviral, and antiflammatory agent in Iran. Based on knowledge of authors, as we know, there is low documented proof on antibacterial properties of S. striata hydroalcoholic extract against Staphylococcus aureus (S. aureus) (ATCC No. 25923) in west of Iran. As a screen test to discover antibacterial properties of the extract, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to specify MIC. The results of agar disk and agar well diffusion tests showed S. striata have prevented the growth of S. aureus and destroyed it. Also, by increasing the concentration of S. striata, the inhibition zone in many of samples increased. The MIC and MBC value was 0.031 g/ml for S. striata. This study confirmed the antibacterial effects of the S. striata on S. aureus. Additional in vivo studies and clinical trials would be needed to justify and further evaluate the potential of the plant as an antibacterial agent in topical or oral applications.


Sign in / Sign up

Export Citation Format

Share Document