scholarly journals Xuebijing Ameliorates Sepsis-Induced Lung Injury by Downregulating HMGB1 and RAGE Expressions in Mice

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Qiao Wang ◽  
Xin Wu ◽  
Xiaowen Tong ◽  
Zhiling Zhang ◽  
Bing Xu ◽  
...  

Xuebijing (XBJ) injection, a traditional Chinese medicine, has been reported as a promising approach in the treatment of sepsis in China. However, its actual molecular mechanisms in sepsis-induced lung injury are yet unknown. Therefore, this study aimed to investigate the beneficial effects of XBJ on inflammation and the underlying mechanisms in a model of caecal ligation and puncture-(CLP-) induced lung injury. The mice were divided into CLP group, CLP+XBJ group (XBJ, 4 mL/kg per 12 hours), and sham group. The molecular and histological examinations were performed on the lung, serum, and bronchoalveolar lavage (BAL) fluid samples of mice at the points of 6, 24, and 48 hours after CLP. The results show that XBJ reduces morphological destruction and neutrophil infiltration in the alveolar space and lung wet/dry weight ratio, which improves mortality of CLP-induced lung injury. Meanwhile, XBJ treatment downregulates high mobility group box protein 1 (HMGB1) and the receptor for advanced glycation end products (RAGE) expression, as well as neutrophil counts, production of IL-1β, IL-6, and TNF-αin the BAL fluids. In conclusion, these results indicate that XBJ may reduce the mortality through inhibiting proinflammatory cytokines secretion mediated by HMGB1/RAGE axis.

2006 ◽  
Vol 291 (4) ◽  
pp. L580-L587 ◽  
Author(s):  
Je Hyeong Kim ◽  
Min Hyun Suk ◽  
Dae Wui Yoon ◽  
Seung Heon Lee ◽  
Gyu Young Hur ◽  
...  

Neutrophils are considered to play a central role in ventilator-induced lung injury (VILI). However, the pulmonary consequences of neutrophil accumulation have not been fully elucidated. Matrix metalloproteinase-9 (MMP-9) had been postulated to participate in neutrophil transmigration. The purpose of this study was to investigate the role of MMP-9 in the neutrophilic inflammation of VILI. Male Sprague-Dawley rats were divided into three groups: 1) low tidal volume (LVT), 7 ml/kg of tidal volume (VT); 2) high tidal volume (HVT), 30 ml/kg of VT; and 3) HVT with MMP inhibitor (HVT+MMPI). As a MMPI, CMT-3 was administered daily from 3 days before mechanical ventilation. Degree of VILI was assessed by wet-to-dry weight ratio and acute lung injury (ALI) scores. Neutrophilic inflammation was determined from the neutrophil count in the lung tissue and myeloperoxidase (MPO) activity in the bronchoalveolar lavage fluid (BALF). MMP-9 expression and activity were examined by immunohistochemical staining and gelatinase zymography, respectively. The wet-to-dry weight ratio, ALI score, neutrophil infiltration, and MPO activity were increased significantly in the HVT group. However, in the HVT+MMPI group, pretreatment with MMPI decreased significantly the degree of VILI, as well as neutrophil infiltration and MPO activity. These changes correlated significantly with MMP-9 immunoreactivity and MMP-9 activity. Most outcomes were significantly worse in the HVT+MMPI group compared with the LVT group. In conclusion, VILI mediated by neutrophilic inflammation is closely related to MMP-9 expression and activity. The inhibition of MMP-9 protects against the development of VILI through the downregulation of neutrophil-mediated inflammation.


2004 ◽  
Vol 287 (2) ◽  
pp. L402-L410 ◽  
Author(s):  
Kiyoyasu Kurahashi ◽  
Shuhei Ota ◽  
Kyota Nakamura ◽  
Yoji Nagashima ◽  
Takuya Yazawa ◽  
...  

Pneumonia caused by Pseudomonas aeruginosa carries a high rate of morbidity and mortality. A lung-protective strategy using low tidal volume (VT) ventilation for acute lung injury improves patient outcomes. The goal of this study was to determine whether low VTventilation has similar utility in severe P. aeruginosa infection. A cytotoxic P. aeruginosa strain, PA103, was instilled into the left lung of rats anesthetized with pentobarbital. The lung-protective effect of low VT(6 ml/kg) with or without high positive end-expiratory pressure (PEEP, 10 or 3 cmH2O) was then compared with high VTwith low PEEP ventilation (VT12 ml/kg, PEEP 3 cmH2O). Severe lung injury and septic shock was induced. Although ventilatory mode had little effect on the involved lung or septic physiology, injury to noninvolved regions was attenuated by low VTventilation as indicated by the wet-to-dry weight ratio (W/D; 6.13 ± 0.78 vs. 3.78 ± 0.26, respectively) and confirmed by histopathological examinations. High PEEP did not yield a significant protective effect (W/D, 4.03 ± 0.32) but, rather, caused overdistension of noninvolved lungs. Bronchoalveolar lavage revealed higher concentrations of TNF-α in the fluid of noninvolved lung undergoing high VTventilation compared with those animals receiving low VT. We conclude that low VTventilation is protective in noninvolved regions and that the application of high PEEP attenuated the beneficial effects of low VTventilation, at least short term. Furthermore, low VTventilation cannot protect the involved lung, and high PEEP did not significantly alter lung injury over a short time course.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xuanfei Li ◽  
Zheng Liu ◽  
He Jin ◽  
Xia Fan ◽  
Xue Yang ◽  
...  

Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.


2014 ◽  
Vol 307 (4) ◽  
pp. H621-H627 ◽  
Author(s):  
Lusha Xiang ◽  
Silu Lu ◽  
Peter N. Mittwede ◽  
John S. Clemmer ◽  
Graham W. Husband ◽  
...  

Early hyperglycemia after trauma increases morbidity and mortality. Insulin is widely used to control posttrauma glucose, but this treatment increases the risk of hypoglycemia. We tested a novel method for early posttrauma hyperglycemia control by suppressing hepatic glycogenolysis via β2-adrenoreceptor blockade [ICI-118551 (ICI)]. We have shown that, after severe trauma, obese Zucker (OZ) rats, similar to obese patients, exhibit increased acute lung injury compared with lean Zucker (LZ) rats. We hypothesized that OZ rats exhibit a greater increase in early posttrauma glucose compared with LZ rats, with the increased posttrauma hyperglycemia suppressed by ICI treatment. Orthopedic trauma was applied to both hindlimbs in LZ and OZ rats. Fasting plasma glucose was then monitored for 6 h with or without ICI (0.2 mg·kg−1·h−1 iv.) treatment. One day after trauma, plasma IL-6 levels, lung neutrophil numbers, myeloperoxidase (MPO) activity, and wet-to-dry weight ratios were measured. Trauma induced rapid hepatic glycogenolysis, as evidenced by decreased liver glycogen levels, and this was inhibited by ICI treatment. Compared with LZ rats, OZ rats exhibited higher posttrauma glucose, IL-6, lung neutrophil infiltration, and MPO activity. Lung wet-to-dry weight ratios were increased in OZ rats but not in LZ rats. ICI treatment reduced the early hyperglycemia, lung neutrophil retention, MPO activity, and wet-to-dry weight ratio in OZ rats to levels comparable with those seen in LZ rats, with no effect on blood pressure or heart rate. These results demonstrate that β2-adrenoreceptor blockade effectively reduces the early posttrauma hyperglycemia, which is associated with decreased lung injury in OZ rats.


2020 ◽  
Vol 19 (6) ◽  
pp. 1167-1171
Author(s):  
Xiao Wang ◽  
Lei Huang ◽  
Peng Li

Purpose: To determine the effect of pristimerin on sepsis-induced lung injury, and the underlying mechanism of action.Methods: Lung injury was established in mice via induction of sepsis through cecal ligation and puncture (CLP). The effect of pristimerin was evaluated based on lung wet/dry weight and PaO2/FiO2 ratios. Lung tissue was subjected to immunohistochemical and histopathological analyses, as well as Western blotting. Furthermore, the serum levels of inflammatory mediators were determined.Results: Pristimerin reversed the altered lung wet/dry weight ratio and PaO2/FiO2 ratio in the lung, and also reduced lung injury score, relative to CLP group (p < 0.05). Moreover, it suppressed nucleocytoplasmic translocation of high mobility group protein B1 (HMGB1) in lung tissue. Serum levels of inflammatory mediators and expression levels of inducible nitric oxide synthase and nuclear factorkappaB p65 were significantly reduced by pristimerin (p < 0.05).Conclusion: Pristimerin ameliorates sepsis-induced lung injury by inhibiting HMGB1/NF-κB. Thus, this compound has a potential for clinical application in the management of lung injury. Keywords: Pristimerin, Sepsis, Lung injury, Inflammatory mediators, HMGB1


1986 ◽  
Vol 71 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Stanley Braude ◽  
David Royston

1. The effect in the rat of salbutamol infusion (1 μg min−1 kg−1) on acid-induced lung injury has been determined. Severity of lung injury was assessed by two techniques: the pulmonary clearance of 99mTc-diethylenetriaminepenta-acetate (99mTc-DTPA) and the lung wet/dry weight ratio, giving indices of alveolar epithelial permeability and transendothelial water filtration respectively. 2. Mean half-time of clearance of 99mTc-DTPA was increased significantly in rats who had intratracheal acid-induced injury and control (saline) intravenous infusion (19.4 ± 2.6 min) compared with non-acid-treated rats (98.1 ± 7.2) (P < 0.0001). However, those animals who had intratracheal acid injury and subsequent salbutamol intravenous infusion had significantly faster clearance (11.5 ± 1.9) than the acid and control infusion group (P < 0.05). 3. Gravimetric lung water in the acid-only rats (expressed as wet/dry weight ratio) was increased significantly (6.4 ± 0.3) compared with the non-acid-treated controls (5.4 ± 0.2) (P < 0.01). Acid-treated rats who had salbutamol infused had dramatically increased lung water (10.0 ± 0.6) (P < 0.001 vs acid and control infusion). 4. Intravenous salbutamol infusion itself produced no significant difference in the results for both techniques, compared with the non-acid-treated time-course controls. 5. Infused salbutamol accentuates acid-induced lung injury in the rat. Possible factors responsible for these findings include β2-adrenergic agonist mediated inhibition of hypoxic pulmonary vasoconstriction (HPV) and a predominant β1-adrenergic agonist inotropic effect of salbutamol with resultant rise in pulmonary artery pressure.


2021 ◽  
Vol 22 (11) ◽  
pp. 5533
Author(s):  
Alessio Filippo Peritore ◽  
Ramona D’Amico ◽  
Rosalba Siracusa ◽  
Marika Cordaro ◽  
Roberta Fusco ◽  
...  

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Author(s):  
Richard A. Seidu ◽  
Min Wu ◽  
Zhaoliang Su ◽  
Huaxi Xu

Gliomas represent 60% of primary intracranial brain tumors and 80% of all malignant types, with highest morbidity and mortality worldwide. Although glioma has been extensively studied, the molecular mechanisms underlying its pathology remain poorly understood. Clarification of the molecular mechanisms involved in their development and/or treatment resistance is highly required. High mobility group box 1 protein (HMGB1) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation and migration, through receptor for advanced glycation end products and toll like receptors in a number of cancers including gliomas. It is known that excessive release of HMGB1 in cancer leads to unlimited replicative potential, ability to develop blood vessels (angiogenesis), evasion of programmed cell death (apoptosis), self-sufficiency in growth signals, insensitivity to inhibitors of growth, inflammation, tissue invasion and metastasis. In this review we explore the mechanisms by which HMGB1 regulates apoptosis and autophagy in glioma. We also looked at how HMGB1 mediates glioma regression and promotes angiogenesis as well as possible signaling pathways with an attempt to provide potential therapeutic targets for the treatment of glioma.


1990 ◽  
Vol 69 (6) ◽  
pp. 2067-2071 ◽  
Author(s):  
R. Burger ◽  
D. Fung ◽  
A. C. Bryan

Repetitive total lung lavage in adult rabbits leads to a reproducible severe surfactant-deficient lung injury. Hypoxemia requiring mechanical ventilation occurs, accompanied by a substantial pulmonary hypertension, a large intra-alveolar protein leak, peripheral neutropenia, and pathological features of marked neutrophil infiltration with extensive hyaline membrane formation. Pretreatment with indomethacin abolishes postlavage pulmonary hypertension, preserves a slightly better lung function with higher arterial PO2, and prevents the postlavage peripheral neutropenia found in untreated animals. Pretreatment with a thromboxane A2 receptor blocker (L 655,240, Merck Frosst, Canada) also completely attenuated pulmonary hypertension, providing evidence that thromboxane A2 mediates pulmonary arterial hypertension after lung lavage. However, specific thromboxane receptor blockade had no other long-lasting beneficial effects on the ongoing injury in this model.


2006 ◽  
Vol 34 (04) ◽  
pp. 613-621 ◽  
Author(s):  
Yanning Qian ◽  
Jie Sun ◽  
Zhongyun Wang ◽  
Jianjun Yang

Sepsis is associated with the highest risk of progression to acute lung injury or acute respiratory distress syndrome. Shen-Fu has been advocated to treat many severely ill patients. Our study was designed to investigate the effect of Shen-Fu on endotoxin-induced acute lung injury in vivo. Adult male Wistar rats were randomly divided into 6 groups: controls; those challenged with endotoxin (5 mg/kg) and treated with saline; those challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (1 mg/kg); those challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (10 mg/kg); increase challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (100 mg/kg); saline injected and treated with Shen-Fu (100 mg/kg). TNF-α, IL-6, and NF-kappa B were investigated in the lung two hours later. Myeloperoxidase (MPO) activity and wet/dry weight ratio were investigated six hours later. Intravenous administration of endotoxin provoked significant lung injury, which was characterized by increment increase of MPO activity and wet/dry lung weight ratio, and TNF-α and IL-6 expression and NF-kappa B activation. Shen-Fu (10,100 mg/kg) decreased MPO activity and wet/dry weight ratio and inhibited TNF-α and IL-6 production, endotoxin-induced NF-kappa B activation. Our results indicated that Shen-Fu at a dose of higher than 10 mg/kg inhibited endotoxin-induced pulmonary inflammation in vivo.


Sign in / Sign up

Export Citation Format

Share Document