scholarly journals Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Byong Chol Bai ◽  
Dae-Wook Park ◽  
Hai Viet Vo ◽  
Samer Dessouky ◽  
Ji Sun Im

This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.


Author(s):  
Félix Pérez-Jiménez ◽  
Ramon Botella ◽  
Rodrigo Miró

Fatigue cracking is considered one of the main damage mechanisms in asphalt pavement design. Design methods use fatigue laws obtained by laboratory testing of the materials involved. Typically, these tests consist of subjecting the asphalt mixture to cyclic loading until failure occurs. However, failure is associated not with specimen fracture (which is unusual), but with a slight decrease in the mechanical properties of the material, usually in the complex modulus. As a consequence, it is important to differentiate between real damage to the material and changes in its viscoelastic behavior and thixotropy. It is also crucial to account for the healing that occurs in asphalt material after rest periods. The above considerations are important in the fatigue testing of asphalt binders because these materials show pronounced viscoelastic behavior and thixotropy, especially when subjected to cyclic loading. This paper demonstrates that in many cases what is taken for fatigue failure during testing (i.e., a decrease in the complex modulus below half of its initial value) is actually thixotropy. Thus, the complex modulus can be recovered by reducing the loading or, as in this study, the strain applied. In contrast, asphalt mixtures experience irreversible damage, and depending on the asphalt binder, the thixotropic effects are more or less pronounced. This paper analyzes the failure criteria currently used in the fatigue testing of asphalt mixtures and binders and evaluates the parameters chosen, namely, complex modulus (G*) and phase angle (δ) to characterize asphalt binders (G*sin δ). A cyclic uniaxial tension–compression test under strain-controlled conditions was performed. Three test modalities were used: time sweeps (constant strain amplitude until total failure), increasing strain sweeps (increase in strain amplitude every 5,000 cycles), and up-and-down strain sweeps (alternating increases and decreases in strain amplitude).


2012 ◽  
Vol 511 ◽  
pp. 60-63
Author(s):  
Yu Zheng Ren ◽  
Jie Zhu Liu ◽  
Biao Ma ◽  
Sha Sha Wang

Directly mixing the PCM to asphalt mixture may adversely affect mixture performance. By the experiment of SEM, the diffusion-absorption circle testing and the DSC, the micro-morphology and the adsorption characteristics to PCM of four carriers and the thermal properties of the composite shape-stabilized phase change materials (CSPCM) were analyzed. The results showed that the activated carbon, the floating bead and the white carbon black have more developed porous structure. The white carbon black has the best effect on the adsorption of PCM. The shape-stabilized PCM prepared by the physical adsorption method has the leakage problem. The CSPCM with the white carbon black carrier has the best heat storage capacity. The white carbon black is the best carrier of PCM for asphalt mixture.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4910
Author(s):  
Ping Zhang ◽  
Lan Ouyang ◽  
Lvzhen Yang ◽  
Yi Yang ◽  
Guofeng Lu ◽  
...  

As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing factors in this work. Based on the Box–Behnken design (BBD), carbon black/bio-oil composite modified asphalt was prepared to perform the softening point, penetration, multiple stress creep and recovery (MSCR), and bending beam rheometer (BBR) tests. The response surface method (RSM) was used to analyze the test results. In addition, the base asphalt mixtures and the optimal performance carbon black/bio-oil composite modified asphalt mixtures were formed for rutting and low-temperature splitting tests. The results show that incorporating carbon black can enhance the asphalt’s high-temperature performance by the test results of irrecoverable creep compliance (Jnr) and strain recovery rate (R). By contrast, the stiffness modulus (S) and creep rate (M) test results show that bio-oil can enhance the asphalt’s low-temperature performance. The quadratic function models between the performance indicators of carbon black/bio-oil composite modified asphalt and the test influencing factors were established based on the RSM. The optimal performance modified asphalt mixture’s carbon black and bio-oil content was 15.05% and 9.631%, and the shear time was 62.667 min. It was revealed that the high-temperature stability and low-temperature crack resistance of the carbon black/bio-oil composite modified asphalt mixture were better than that of the base asphalt mixture because of its higher dynamic stability (DS) and toughness. Therefore, carbon black/bio-oil composite modified asphalt mixture can be used as a new type of choice for road construction materials, which is in line with green development.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jian Xu ◽  
Yan Gong ◽  
Li-Biao Chen ◽  
Tao Ma ◽  
Jun-Cheng Zeng ◽  
...  

Aiming to evaluate the high-temperature performance of asphalt binders and asphalt mixtures and to investigate the reliability of the standard technical indexes to evaluate the performance of the asphalt, six typically used asphalt types were employed in this study. The standard high-temperature rheological test, the multiple stress creep recovery (MSCR) test, and the zero-shear viscosity (ZSV) test were employed to characterize the high-temperature performance and non-Newtonian fluid properties of the asphalt. Meanwhile, the high-temperature performance of the asphalt mixture was evaluated through the rutting tests based on the mixture design of AC-13. In general, the modified asphalt performed better than the unmodified asphalt according to the high-temperature rheological properties tests. The ranking of the six kinds of asphalt was confirmed to be different in various laboratory tests. The test results of the asphalt binders showed that the Tafpack Super- (TPS-) modified asphalt performed best in the MSCR and ZSV tests, while the low-grade asphalt PEN20 had the best technical indexes in the dynamic shear rheometer (DSR) test. Besides, the relation between the asphalt and the asphalt mixture was analyzed by gray relational analysis (GRA) method. The present rutting indicator G ∗ / sin   δ  and  G ∗ / 1 − sin   δ ⋅   tan   δ − 1 for evaluating the asphalt mixtures’ high-temperature performance might no longer be suitable. The Cross/Williamson model was the most suitable for calculating and fitting the ZSV, which could be used as the key indicator of the high-temperature performance evaluation of the asphalt. This work lays a foundation for the further study of the high-temperature performance evaluation of asphalt binders.


Author(s):  
Taesoon Park ◽  
Brian J. Coree ◽  
C. W. Lovell

The viability of using pyrolized carbon black (CBp) derived from waste tires as a reinforcing agent in asphalt mixtures was evaluated. Commercial carbon black (CB) has been previously shown to reduce the rutting resistance, temperature susceptibility, and cracking propagation potential of asphalt concrete. It was believed that CBp could produce similar benefits; this belief has been confirmed by this study. Different ratios of CBp and CB (5, 10, 15, and 20 percent by weight of asphalt) were blended with two grades of asphalt (AC-10 and AC-20). The Marshall method, the gyratory testing machine, the dynamic creep testing (confined), the indirect tensile testing, and the resilient modulus test were performed. The test results of CBp mixtures were compared with results of CB and conventional mixtures. The analyses of test results show that the typical performance of CBp-modified asphalt mixtures is improved with respect to commercial CB and conventional mixtures. The rutting potential and the temperature susceptibility can be reduced by the inclusion of CBp in the asphalt mixture. A CBp content of 10 to 15 percent by weight of asphalt is recommended for improvement of asphalt concrete.


2015 ◽  
Vol 73 (4) ◽  
Author(s):  
Ekarizan Shaffie ◽  
Juraidah Ahmad ◽  
Ahmad Kamil Arshad ◽  
Dzraini Kamarun

This paper presents the potential benefits of nanopolyacrylate (NPA) for the asphalt mixtures used on pavement. This research evaluates the resilient modulus performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified bitumen mix (UMB) and nanopolyacrylate modified bitumen mix (NPMB). Nanopolyacrylate polymer modified bitumen was prepared from addition of 6 percent of NPA polymer into asphalt bitumen. Resilient modulus results from Resilient Modulus test were determined to evaluate the performance of these mixtures. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicated that these mixtures were good with respect to durability and flexibility. The Resilient modulus result of NPMB demonstrates better resistance to rutting than those prepared using UMB mix. It was estimated that the average resilient modulus values for both UMB and NPMB mixtures are decreased by 80 percent when the test temperature increased from 25ºC to 40ºC.   In conclusion, the addition of NPA to the binder has certainly improved the bitumen properties significantly and hence increase the resistant to rutting of the asphalt mixture.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Hui Yao ◽  
Zhanping You

The objectives of this research are to use micro- and nanomaterials to modify the asphalt mixture and to evaluate the mechanical performance of asphalt mixtures. These micro- and nanomaterials, including carbon microfiber, Nanomer material, nanosilica, nonmodified nanoclay, and polymer modified nanoclay, were selected to blend with the control asphalt to improve the overall performance of the modified asphalt binders and mixtures. The microstructures of original materials and asphalt binders were observed by the field emission scanning electron microscope (FE-SEM). The mixture performance tests were employed to evaluate the resistance to rutting and permanent deformation of the modified asphalt mixtures. Test results indicate that(1)the dynamic modulus of micro- and nanomodified asphalt mixtures improved significantly;(2)the rutting susceptibility of the modified asphalt mixtures was reduced significantly compared to that of the control asphalt mixture;(3)the microstructures of modified asphalt binders were different from the control asphalt, and the structures determine the improvement in the performance of modified asphalt mixtures. These results indicate that the addition of micro- and nanomaterials enhanced the rutting performance and strength of asphalt mixtures. In addition, the analysis of variance (ANOVA) was used to analyze the modifying effects of micro- and nanomaterials on the performance.


Sign in / Sign up

Export Citation Format

Share Document