scholarly journals Durability Evolution of RC Bridge under Coupling Action of Chloride Corrosion and Carbonization Based on DLA Model

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Haoxiang He ◽  
Ruifeng Li ◽  
Kui Chen

Chloride attack and carbonization are the main factors which affect the durability of concrete structures, and the respective theoretical models are systematically established. However, the quantitative analysis and models about the coupling effect of chloride attack and carbonization are less, so the precision and level of durability analysis of reinforced concrete are restricted. Diffusion-limited aggregation (DLA) model can finely simulate the process of gas diffusion and condensation with randomness and fractal characteristics, which is suitable for revealing the durability evolution process of the chloride attack, carbonization, and the coupling action in concrete. Based on the principle of DLA, considering the factors such as diffusion depth, concrete properties, and exposure conditions which influence the characteristics of chloride diffusion and carbonization, as well as the coupling effect, an integrated DLA model is established. The concentration of carbon dioxide and chloride at any time and any location can be obtained and dynamically displayed based on the DLA model. The performance predict method for concrete and steel bars considering fatigue effect is presented based on DLA, according to the demand for bridge durability analysis. Numerical examples show that the method can dynamically and intensively simulate the durability evolution process of reinforced concrete bridge.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1138
Author(s):  
Yang Luo ◽  
Ditao Niu ◽  
Li Su

The effect of fibre reinforcement on the chloride diffusion property of concrete is controversial, and the coupling effect of sulphate erosion and drying–wetting cycles in marine environments has been neglected in previous studies. In this study, the chloride diffusion property of hybrid basalt–polypropylene fibre-reinforced concrete subjected to a combined chloride–sulphate solution under drying–wetting cycles was investigated. The effects of basalt fibre (BF), polypropylene fibre (PF), and hybrid BP–PF on the chloride diffusion property were analysed. The results indicate that the presence of sulphate inhibits the diffusion of chloride at the early stage of erosion. However, at the late stage of erosion, sulphate does not only accelerate the diffusion of chloride by causing cracking of the concrete matrix but also leads to a decrease in the alkalinity of the pore solution, which further increases the risk of corrosion of the reinforcing steel. An appropriate amount of fibre can improve the chloride attack resistance of concrete at the early stage. With the increase in erosion time, the fibre effectively prevents the formation and development of sulphate erosion microcracks, thus reducing the adverse effects of sulphate on the resistance of concrete to chloride attack. The effects of sulphate and fibre on the chloride diffusion property were also elucidated in terms of changes in corrosion products, theoretical porosity, and the fibre-matrix interface transition zone.


Author(s):  
Naser Nosratzehi ◽  
Mahmoud Miri

This paper presents an experimental study on the durability of both sound and cracked reinforced concrete (RC) beam specimens. Using nano-silica (NS) can improve the durability properties of reinforced concrete. So, RC beams with three nano-silica percentages of 0 %, 1.5 %, and 3 % were prepared. In addition, to consider the effect of cracking on corrosion, crack widths between 0.1 mm and 0.5 mm, and cover depths of 30 mm and 45 mm were considered. All beam specimens were subjected to 5 % NaCl solution and monitored weekly for half-cell potentials (HCP). The presented results include the HCP evaluation and diffusion factor values in sound and cracked concrete beams exposed to chloride attack. The experimental results indicated that the chloride diffusion coefficient increases with extending crack width. Nano-silica improved the permeability characteristics of concrete, HCP and also diffusion factor values. Regressive models of the chloride diffusion factor and HCP values were proposed for influencing parameters, i.e., nano-silica and crack width with two different cover depths.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3975
Author(s):  
Magdalena German ◽  
Jerzy Pamin

Reinforced concrete structures can be strongly damaged by chloride corrosion of reinforcement. Rust accumulated around rebars involves a volumetric expansion, causing cracking of the surrounding concrete. To simulate the corrosion progress, the initiation phase of the corrosion process is first examined, taking into account the phenomena of oxygen and chloride transport as well as the corrosion current flow. This makes it possible to estimate the mass of produced rust, whereby a corrosion level is defined. A combination of three numerical methods is used to solve the coupled problem. The example object of the research is a beam cross-section with four reinforcement bars. The proposed methodology allows one to predict evolving chloride concentration and time to reinforcement depassivation, depending on the reinforcement position and on the location of a point on the bar surface. Moreover, the dependence of the corrosion initiation time on the chloride diffusion coefficient, chloride threshold, and reinforcement cover thickness is examined.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Salar Lashkari ◽  
Farzad Yazdipanah ◽  
Mahyar Shahri ◽  
Prabir Sarker

AbstractCoatings are used as practical solutions against the intrusion of corrosive ions into concrete structures, particularly, in the harsh marine environment. In the present study, the effectiveness of using cement-based and geopolymer-based coatings produced using by-product materials has been evaluated. Silica fume and GGBFS at their optimum dosages were incorporated into mortar mixtures as a cement replacement, and mixtures of NaOH or KOH and sodium silicate solutions were used in the alkali-activated mortars. Shrinkage test, RCMT, and capillary absorption test as common experiments for durability analysis, as well as tests related to the mechanical and bonding properties including compressive strength test, pull-off test, and shear bonding strength test were carried out on the specimens. According to the results, both geopolymer and cement-based mortars improved the compressive and bonding strengths, and chloride diffusion resistance of coatings compared to the OPC mortar. Silica fume was found to be more effective in the strength development of mortars at young ages, while GGBFS was more responsible for acting as a filler and producing further gel in the older ages. The major drawback with geopolymer mortars is the high rate of water absorption and shrinkage coefficient in the early hours, which shows the importance of curing of these mortars at young ages. Overall, the mix design produced with 30% GGBFS and 7.5% silica fume showed the highest durability and mechanical properties and proved to be more compatible with the harsh environment of the Persian Gulf.


1998 ◽  
Vol 25 (1) ◽  
pp. 87-95 ◽  
Author(s):  
A K Suryavanshi ◽  
R N Swamy ◽  
S McHugh

The overall aim of this paper is to establish the process and amount of chlorides penetrating reinforced concrete elements when exposed to a salt-laden environment. For this purpose, a number of slabs were subjected to 70 cycles of wetting-drying regime with a 4% sodium chloride solution over a period of 2-3 years. To examine the direction of transportation of the chlorides, some of the slabs were partially coated with a surface coating system known to be highly resistant to chloride penetration. The amount and depth of penetration of chlorides in the coated and uncoated parts of the slab were then determined. The results show conclusively that, in large exposed areas of concrete, chlorides diffuse both in the direction of depth and in a direction lateral to the depth of the element. The amount of chlorides and the distance of their lateral diffusion depend on the water-to-cement (w/c) ratio of the concrete and the duration of exposure. Concrete mixes with a high w/c ratio (0.75) are highly conducive to this lateral diffusion of chlorides. Although concrete mixes of lower w/c ratios (0.45 and 0.60) are less conducive to lateral diffusion of chlorides, in practice, all concretes should be considered to be prone to chloride diffusion in both the direction of gravity and the lateral direction because of the effects of cracking. In unprotected concrete, reducing the w/c ratio from 0.60 to 0.45 is far more effective in decreasing chloride penetration than that achieved by reducing the w/c ratio from 0.75 to 0.60. The acrylic-based surface coating system is totally resistant to chloride penetration.Key words: chloride diffusion, concrete slabs, durability, water-to-cement ratio, surface coating, lateral diffusion.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2851
Author(s):  
Huanqiang Liu ◽  
Linhua Jiang

The durability of the concrete in underground and marine engineering is affected by the underground and ocean environment. Chloride diffusion coefficient under hydrostatic pressure is a key parameter of concrete durability design under corresponding conditions. Therefore, this paper studies the diffusion behavior of chloride in different diffusion source solutions by experiment and simulation. Based on the experimental results, this paper proposes a new chloride diffusion model under the coupling effect of diffusion and convection. The interaction of ions and compounds in the diffusion source solutions, concrete pore fluid, and concrete material are considered in the new chloride diffusion model. The experimental results show that chloride diffusion rate is significantly affected by hydrostatic pressure, which increases with the increase of hydrostatic pressure. The chloride diffusion coefficient shows a certain difference in difference diffusion source solutions. The chloride diffusion coefficient in divalent cationic diffusion source solutions is the largest, the chloride diffusion coefficient in the divalent and monovalent cationic compound ones is in the middle, and the chloride diffusion coefficient in the monovalent cationic ones is the smallest. There is a linear relationship between the chloride diffusion coefficient and the hydrostatic pressure whether in single or combined cationic diffusion source solutions.


2018 ◽  
Vol 8 (8) ◽  
pp. 1310
Author(s):  
Naoya Kihara ◽  
Osamu Sakai

Fractal-like nanoparticle two-dimensional patterns forming in diffusion-limited aggregation show variant spatial patterns. However, they have invariant statistical properties in their network topologies, even though their formation is completely in self-assembled processes. One of the outputs from these topological properties is optical resonances at invariant frequencies, which is a required feature of a metamaterial alternative. Fractal-like metallic patterns studied here in both experiments and theoretical models exhibit similar resonance frequencies in the infrared-ray range, and they depend on the unit length of nanoparticles composing arbitrary fractal-like structures. The scheme of analysis applied here using complex network theory does not only reveal the topological properties of the nanoparticle network, but points out their optical and possibly other physical potentials arising from their geometrical properties.


Sign in / Sign up

Export Citation Format

Share Document