scholarly journals Metformin Alleviated Aβ-Induced Apoptosis via the Suppression of JNK MAPK Signaling Pathway in Cultured Hippocampal Neurons

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Chen ◽  
Ying Teng ◽  
Xingguang Zhang ◽  
Xiaofeng Lv ◽  
Yanling Yin

Both diabetes and hyperinsulinemia are confirmed risk factors for Alzheimer’s disease. Some researchers proposed that antidiabetic drugs may be used as disease-modifying therapies, such as metformin and thiazolidinediones, although more evidence was poorly supported. The aim of the current study is to investigate the role of metformin in Aβ-induced cytotoxicity and explore the underlying mechanisms. First, the experimental results show that metformin salvaged the neurons exposed to Aβin a concentration-dependent manner with MTT and LDH assay. Further, the phosphorylation levels of JNK, ERK1/2, and p38 MAPK were measured with western blot analysis. It was investigated that Aβincreased phospho-JNK significantly but had no effect on phospho-p38 MAPK and phospho-ERK1/2. Metformin decreased hyperphosphorylated JNK induced by Aβ; however, the protection of metformin against Aβwas blocked when anisomycin, the activator of JNK, was added to the medium, indicating that metformin performed its protection against Aβin a JNK-dependent way. In addition, it was observed that metformin protected the neurons via the suppression of apoptosis. Taken together, our findings demonstrate that metformin may have a positive effect on Aβ-induced cytotoxicity, which provides a preclinical strategy against AD for elders with diabetes.

2015 ◽  
Vol 36 (2) ◽  
pp. 642-654 ◽  
Author(s):  
Kong-He Hu ◽  
Wen-Xue Li ◽  
Min-Ying Sun ◽  
She-Bing Zhang ◽  
Cai-Xia Fan ◽  
...  

Background/Aims: Cadmium (Cd) induces apoptosis in different kinds of cells, including osteoblasts, both in vivo and in vitro. However, little is known about the mechanisms by which Cd induces apoptosis. Methods: In the present study, we used the human osteosarcoma cell line MG63, which has characteristics similar to human osteoblasts, as an in vitro model to determine the cellular mechanisms by which Cd induces apoptosis. Results: We found that short-term exposure to CdCl2 induced apoptosis in MG63 cells. Furthermore, the incubation of cells with CdCl2 significantly increased the level of phosphorylated p38MAPK and significantly decreased the phosphorylation of ERK1/2 in a concentration-dependent manner. Additionally, the inhibition of the phosphorylation of p38 MAPK by SB202190 protected MG63 cells from Cd-induced apoptosis. The incubation of MG63 cells with the ERK1/2 inhibitor PD98059 significantly increased apoptosis in MG63 cells. CdCl2 also significantly increased the intracellular levels of ROS. N-acetylcysteine (NAC) significantly reduced ROS levels and reversed the effects of CdCl2 on MAPK signaling. Conclusion: Our results suggested that Cd induced apoptosis in MG63 cells by increasing ROS, activation of p38 MAPK and inhibition of ERK1/2 pathways.


2020 ◽  
Author(s):  
Jun Sun ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
Renfeng Liu ◽  
...  

Abstract Background: WT161 as a new selective HDAC6 inhibitor has been shown to play anti-tumor effects on multiple myeloma and breast cancer. However, the role of WT161 in osteosarcoma remains unclear. The aim of this study is to explore the role of WT161 in osteosarcoma and its underlying mechanisms.Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were esatablished to evaluate the anti-proliferative effect of WT161 in vivo.Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein expression level of PTEN and decreased the phosphorylation level of AKT. Notably, WT161 shows synergistically inhibitory effects on osteosarcoma cell combined with 5-FU. Animal experiment results show WT161 inhibits the growth of osteosarcoma tumor and further illustrates that WT161 and 5-FU have a synergistic efficiency in osteosarcoma.Conclusions: These results indicate that WT161 inhibiting the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jiao Peng ◽  
Ting-ting Zheng ◽  
Yue Liang ◽  
Li-fang Duan ◽  
Yao-dong Zhang ◽  
...  

To protect against oxidative stress-induced apoptosis in lens epithelial cells is a potential strategy in preventing cataract formation. The present study aimed at studying the protective effect and underlying mechanisms of p-coumaric acid (p-CA) on hydrogen peroxide- (H2O2-) induced apoptosis in human lens epithelial (HLE) cells (SRA 01–04). Cells were pretreated with p-CA at a concentration of 3, 10, and 30 μM before the treatment of H2O2 (275 μM). Results showed that pretreatment with p-CA significantly protected against H2O2-induced cell death in a dose-dependent manner, as well as downregulating the expressions of both cleaved caspase-3 and cleaved caspase-9 in HLE cells. Moreover, p-CA also greatly suppressed H2O2-induced intracellular ROS production and mitochondrial membrane potential loss and elevated the activities of T-SOD, CAT, and GSH-Px of H2O2-treated cells. As well, in vitro study showed that p-CA also suppressed H2O2-induced phosphorylation of p-38, ERK, and JNK in HLE cells. These findings demonstrate that p-CA suppresses H2O2-induced HLE cell apoptosis through modulating MAPK signaling pathways and suggest that p-CA has a potential therapeutic role in the prevention of cataract.


2019 ◽  
Vol 13 (1) ◽  
pp. 489-496 ◽  
Author(s):  
Jun Jiang ◽  
Nanyang Zhou ◽  
Pian Ying ◽  
Ting Zhang ◽  
Ruojia Liang ◽  
...  

AbstractEmodin, a major component of rhubarb, has anti-tumor effects in a variety of cancers, influencing multiple steps of tumor development through modulating several signaling pathways. The aim of this study is to examine the effect of emodin on cell apoptosis and explore the underlying mechanisms in human endometrial cancer cells. Here we report that emodin can inhibit KLE cell proliferation and induce apoptosis in a time- and dose-dependent manner. Western blot assay found that emodin was involved in MAPK and PI3K/Akt signaling pathways. Specifically, emodin significantly suppressed the phosphorylation of AKT, and enhanced the phosphorylation of MAPK pathways. Furthermore, the generation of reactive oxygen species (ROS) was up-regulated in KLE cells upon treatment with emodin, while the anti-oxidant agent N-acetyl cysteine (NAC) can inhibit emodin-induced apoptosis and promote the activation of AKT and Bcl-2. Taken together, we revealed that emodin may induce apoptosis in KLE cells through regulating the PI3K/AKT and MAPK signaling pathways, indicating the importance of emodin as an anti-tumor agent.


2016 ◽  
Vol 16 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Walied A. Kamel ◽  
Eiji Sugihara ◽  
Hiroyuki Nobusue ◽  
Sayaka Yamaguchi-Iwai ◽  
Nobuyuki Onishi ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4478-4478
Author(s):  
Julia Mazar ◽  
Alexandra Lichtenstein ◽  
Leora Katz ◽  
Ofer Shpilberg ◽  
Itai Levi ◽  
...  

Abstract Many types of antitumor therapy in general and AML in particular exert their effect by activating apoptosis. Apoptosis of AML cells can be induced by cytostatic drugs, corticosteroids, and radiation. Recently, the role of different proteases as possible targets for chemotherapy was described. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a chymotrypsin-like protease (CLP) inhibitor was shown to exert a dual effect on leukemic cells: proapoptotic and antiapoptotic. In the present study the mechanism of its proapoptotic effect was addressed. It was found that the CLP inhibitors, TPCK and 3,4 dichloroisicoumarine induced apoptosis in a time- and concentration-dependent manner. Apoptosis was accompanied by a decrease in mitochondrial membrane potential, cytochrome c release, caspase-3 (but not caspase-8) activation, PS flip-flop (measured by Annexin-V staining followed by flow cytometry analysis) and chromatin condensation, but not fragmentation (detected by acridine orange/ethidium bromide staining). All apoptotic processes induced by TPCK were completely inhibited by cycloheximide. The ability of cycloheximide to inhibit TPCK-induced cell death suggests that protein synthesis plays a role in TPCK-induced apoptosis. Additionaly, the proapoptotic effect of TPCK was abolished by elimination of glucose from the medium. The data supports the role of mitochondria in this process. In the present study the apoptotic pathway driven by inhibition of CLP was demonstrated. Moreover, these findings suggest possible ways of preventing the proapoptotic activity of TPCK and thereby enhancimg its antiapoptotic action.


Marine Drugs ◽  
2020 ◽  
Vol 18 (8) ◽  
pp. 427 ◽  
Author(s):  
Lei Wang ◽  
Jae-Young Oh ◽  
Young-Sang Kim ◽  
Hyo-Geun Lee ◽  
Jung-Suck Lee ◽  
...  

Previous studies suggested that fucoidan with a molecular weight of 102.67 kDa, isolated from Hizikia fusiforme, possesses strong antioxidant activity. To explore the cosmeceutical potential of fucoidan, its anti-photoaging and anti-melanogenesis effects were evaluated in the present study. The anti-photoaging effect was investigated in ultraviolet (UV) B-irradiated human keratinocytes (HaCaT cells), where fucoidan effectively reduced the intracellular reactive oxygen species level and improved the viability of the UVB-irradiated cells without any cytotoxic effects. Moreover, fucoidan significantly decreased UVB-induced apoptosis in HaCaT cells by regulating the protein expression of Bax, Bcl-xL, PARP, and Caspase-3 in HaCaT cells in a concentration-dependent manner. The anti-melanogenesis effect of fucoidan was evaluated in B16F10 melanoma cells that had been stimulated with alpha-melanocyte-stimulating hormone (α-MSH), and fucoidan treatment remarkably inhibited melanin synthesis in α-MSH-stimulated B16F10 cells. Further studies indicated that fucoidan significantly suppressed the expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and-2) in B16F10 cells by down-regulating microphthalmia-associated transcription factor (MITF) through regulation of the ERK–MAPK (extracellular signal regulated kinase-mitogen activated protein kinase) pathway. Taken together, these results suggest that fucoidan isolated from H. fusiforme possesses strong anti-photoaging and anti-melanogenesis activities and can be used as an ingredient in the pharmaceutical and cosmeceutical industries.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2020 ◽  
Vol 20 (4) ◽  
pp. 307-317
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Butyric acid (BT), a short-chain fatty acid, is the preferred colonocyte energy source. The effects of BT on the differentiation, proliferation, and apoptosis of small intestinal epithelial cells of piglets and its underlying mechanisms have not been fully elucidated. Methods: In this study, it was found that 0.2-0.4 mM BT promoted the differentiation of procine jejunal epithelial (IPEC-J2) cells. BT at 0.5 mM or higher concentrations significantly impaired cell viability in a dose- and time-dependent manner. In addition, BT at high concentrations inhibited the IPEC-J2 cell proliferation and induced cell cycle arrest in the G2/M phase. Results: Our results demonstrated that BT triggered IPEC-J2 cell apoptosis via the caspase8-caspase3 pathway accompanied by excess reactive oxygen species (ROS) and TNF-α production. BT at high concentrations inhibited cell autophagy associated with increased lysosome formation. It was found that BT-reduced IPEC-J2 cell viability could be attenuated by p38 MAPK inhibitor SB202190. Moreover, SB202190 attenuated BT-increased p38 MAPK target DDIT3 mRNA level and V-ATPase mRNA level that were responsible for normal acidic lysosomes. Conclusion: In conclusion, 1) at 0.2-0.4 mM, BT promotes the differentiation of IPEC-J2 cells; 2) BT at 0.5 mM or higher concentrations induces cell apoptosis via the p38 MAPK pathway; 3) BT inhibits cells autophagy and promotes lysosome formation at high concentrations.


Author(s):  
Fengyun Zhou ◽  
Ting Feng ◽  
Xiangqi Lu ◽  
Huicheng Wang ◽  
Yangping Chen ◽  
...  

Abstract Mitochondrial reactive oxygen species (mtROS)-induced apoptosis has been suggested to contribute to myocardial ischemia/reperfusion injury. Interleukin 35 (IL-35), a novel anti-inflammatory cytokine, has been shown to protect the myocardium and inhibit mtROS production. However, its effect on cardiomyocytes upon exposure to hypoxia/reoxygenation (H/R) damage has not yet been elucidated. The present study aimed to investigate the potential protective role and underlying mechanisms of IL-35 in H/R-induced mouse neonatal cardiomyocyte injury. Mouse neonatal cardiomyocytes were challenged to H/R in the presence of IL-35, and we found that IL-35 dose dependently promotes cell viability, diminishes mtROS, maintains mitochondrial membrane potential, and decreases the number of apoptotic cardiomyocytes. Meanwhile, IL-35 remarkably activates mitochondrial STAT3 (mitoSTAT3) signaling, inhibits cytochrome c release, and reduces apoptosis signaling. Furthermore, co-treatment of the cardiomyocytes with the STAT3 inhibitor AG490 abrogates the IL-35-induced cardioprotective effects. Our study identified the protective role of IL-35 in cardiomyocytes following H/R damage and revealed that IL-35 protects cardiomyocytes against mtROS-induced apoptosis through the mitoSTAT3 signaling pathway during H/R.


Sign in / Sign up

Export Citation Format

Share Document