scholarly journals The Role of the Transcription Factor Foxo3 in Hearing Maintenance: Informed Speculation on a New Player in the Cochlea

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Patricia M. White

Molecular genetics has proven to be a powerful approach for understanding early-onset hearing loss. Recent work in late-onset hearing loss uses mouse genetics to identify molecular mechanisms that promote the maintenance of hearing. One such gene, Foxo3, is ontologically involved in preserving mitochondrial function. Significant evidence exists to support the idea that mitochondrial dysfunction is correlated with and can be causal for hearing loss. Foxo3 is also ontologically implicated in driving the circadian cycle, which has recently been shown to influence the molecular response to noise damage. In this review, the molecular framework connecting these cellular processes is discussed in relation to the cellular pathologies observed in human specimens of late-onset hearing loss. In bringing these observations together, the possibility arises that distinct molecular mechanisms work in multiple cell types to preserve hearing. This diversity offers great opportunities to understand and manipulate genetic processes for therapeutic gain.

Author(s):  
Hui Shi ◽  
Min Wang ◽  
Yaoxiang Sun ◽  
Dakai Yang ◽  
Wenrong Xu ◽  
...  

Exosomes are lipid bilayer vesicles released by multiple cell types. These bioactive vesicles are gradually becoming a leading star in intercellular communication involving in various pathological and physiological process. Exosomes convey specific and bioactive transporting cargos, including lipids, nucleic acids and proteins which can be reflective of their parent cells, rendering them attractive in cell-free therapeutics. Numerous findings have confirmed the crucial role of exosomes in restraining scars, burning, senescence and wound recovery. Moreover, the biology research of exosomes in cutting-edge studies are emerging, allowing for the development of particular guidelines and quality control methodology, which favor their possible application in the future. In this review, we discussed therapeutic potential of exosomes in different relevant mode of dermatologic diseases, as well as the various molecular mechanisms. Furthermore, given the advantages of favorable biocompatibility and transporting capacity, the bioengineering modification of exosomes is also involved.


2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


2016 ◽  
Vol 113 (34) ◽  
pp. E4995-E5004 ◽  
Author(s):  
Wen Lu ◽  
Michael Winding ◽  
Margot Lakonishok ◽  
Jill Wildonger ◽  
Vladimir I. Gelfand

Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2020 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Hideka Saotome ◽  
Atsumi Ito ◽  
Atsushi Kubo ◽  
Masafumi Inui

Sox9 is a master transcription factor for chondrogenesis, which is essential for chondrocyte proliferation, differentiation, and maintenance. Sox9 activity is regulated by multiple layers, including post-translational modifications, such as SUMOylation. A detection method for visualizing the SUMOylation in live cells is required to fully understand the role of Sox9 SUMOylation. In this study, we generated a quantitative reporter for Sox9 SUMOylation that is based on the NanoBiT system. The simultaneous expression of Sox9 and SUMO1 constructs that are conjugated with NanoBiT fragments in HEK293T cells induced luciferase activity in SUMOylation target residue of Sox9-dependent manner. Furthermore, the reporter signal could be detected from both cell lysates and live cells. The signal level of our reporter responded to the co-expression of SUMOylation or deSUMOylation enzymes by several fold, showing dynamic potency of the reporter. The reporter was active in multiple cell types, including ATDC5 cells, which have chondrogenic potential. Finally, using this reporter, we revealed a extracellular signal conditions that can increase the amount of SUMOylated Sox9. In summary, we generated a novel reporter that was capable of quantitatively visualizing the Sox9-SUMOylation level in live cells. This reporter will be useful for understanding the dynamism of Sox9 regulation during chondrogenesis.


2006 ◽  
Vol 95 (5) ◽  
pp. 2866-2877 ◽  
Author(s):  
Brian Hoffpauir ◽  
Emily McMains ◽  
Evanna Gleason

Nitric oxide (NO) is generated by multiple cell types in the vertebrate retina, including amacrine cells. We investigate the role of NO in the modulation of synaptic function using a culture system containing identified retinal amacrine cells. We find that moderate concentrations of NO alter GABAA receptor function to produce an enhancement of the GABA-gated current. Higher concentrations of NO also enhance GABA-gated currents, but this enhancement is primarily due to a substantial positive shift in the reversal potential of the current. Several pieces of evidence, including a similar effect on glycine-gated currents, indicate that the positive shift is due to an increase in cytosolic Cl−. This change in the chloride distribution is especially significant because it can invert the sign of GABA- and glycine-gated voltage responses. Furthermore, current- and voltage-clamp recordings from synaptic pairs of GABAergic amacrine cells demonstrate that NO transiently converts signaling at GABAergic synapses from inhibition to excitation. Persistence of the NO-induced shift in ECl− in the absence of extracellular Cl− indicates that the increase in cytosolic Cl− is due to release of Cl− from an internal store. An NO-dependent release of Cl− from an internal store is also demonstrated for rat hippocampal neurons indicating that this mechanism is not restricted to the avian retina. Thus signaling in the CNS can be fundamentally altered by an NO-dependent mobilization of an internal Cl− store.


2011 ◽  
Vol 439 (3) ◽  
pp. 349-378 ◽  
Author(s):  
Anthony J. Morgan ◽  
Frances M. Platt ◽  
Emyr Lloyd-Evans ◽  
Antony Galione

Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.


2017 ◽  
Vol 35 (1-2) ◽  
pp. 25-31 ◽  
Author(s):  
Dominik Bettenworth ◽  
Florian Rieder

Background: Intestinal fibrosis with stricture formation is a common feature of inflammatory bowel disease (IBD) and leads to a significantly impaired quality of life in affected patients, intestinal obstruction as well as to the need for surgical intervention. This constitutes a major treatment challenge. Key Messages: Fibrosis results from the response of gut tissue to the insult inflicted by chronic inflammation. Similarly to what occurs in other organs, the underlying fibrogenic mechanisms are complex and dynamic, involving multiple cell types, interrelated cellular events, and a large number of soluble factors. Owing to a breakdown of the epithelial barrier in IBD, luminal bacterial products leak into the interstitium and induce an innate immune response mediated by the activation of both immune and non-immune cells. Other environmental factors as well as chronic inflammation will certainly impact the quality and quantity of intestinal fibrosis. Finally, the composition of the intestinal extracellular matrix is dramatically altered in chronic gut inflammation and actively promotes fibrosis through its mechanical properties. The conventional view that intestinal fibrosis is an inevitable and irreversible process is gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline its pathogenesis. In addition, clinical observations in patients who undergo strictureplasty have shown that stricture formation is reversible. Conclusions: Identification of the unique mechanisms of intestinal fibrogenesis should create a practical framework to target and block specific fibrogenic pathways, estimate the risk of fibrotic complications, permit the detection of early fibrotic changes and, eventually, allow the development of treatment methods customized to each patient's type and degree of intestinal fibrosis.


2015 ◽  
Vol 43 (5) ◽  
pp. 1112-1115 ◽  
Author(s):  
Sarah J. Stein ◽  
Ethan A. Mack ◽  
Kelly S. Rome ◽  
Warren S. Pear

The tribbles protein family, an evolutionarily conserved group of pseudokinases, have been shown to regulate multiple cellular events including those involved in normal and malignant haematopoiesis. The three mammalian Tribbles homologues, Trib1, Trib2 and Trib3 are characterized by conserved motifs, including a pseudokinase domain and a C-terminal E3 ligase-binding domain. In this review, we focus on the role of Trib (mammalian Tribbles homologues) proteins in mammalian haematopoiesis and leukaemia. The Trib proteins show divergent expression in haematopoietic cells, probably indicating cell-specific functions. The roles of the Trib proteins in oncogenesis are also varied and appear to be tissue-specific. Finally, we discuss the potential mechanisms by which the Trib proteins preferentially regulate these processes in multiple cell types.


2015 ◽  
Vol 224 (3) ◽  
pp. R139-R159 ◽  
Author(s):  
Patricia Joseph-Bravo ◽  
Lorraine Jaimes-Hoy ◽  
Jean-Louis Charli

Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo–pituitary–thyroid (HPT) and hypothalamo–pituitary–adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription ofTrhin vivoandin vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.


Sign in / Sign up

Export Citation Format

Share Document