scholarly journals Technological Potential ofLactobacillusStrains Isolated from Fermented Green Olives:In VitroStudies with Emphasis on Oleuropein-Degrading Capability

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Massimo Iorizzo ◽  
Silvia Jane Lombardi ◽  
Vincenzo Macciola ◽  
Bruno Testa ◽  
Giuseppe Lustrato ◽  
...  

Technological properties of two strains ofLactobacillus plantarum(B3 and B11) and one ofLactobacillus pentosus(B4), previously isolated from natural fermented green olives, have been studiedin vitro. Acidifying ability, salt, temperature, and pH tolerances of all strains were found in the range reported for similar strains produced in Italy and optimal growth conditions were found to be 6.0–8.0 pH, 15–30°C temperature, and less than 6% NaCl. Moreover, all strains showed very good tolerance to common olive phenol content (0.3% total phenol) and high oleuropein-degrading capability. It was found that medium composition affected the bacterial oleuropein degradation. B11 strain grown in a nutrient-rich medium showed a lower oleuropein-degrading action than when it was cultivated in nutrient-poor medium. Furthermore, enzymatic activity assays revealed that oleuropein depletion did not correspond to an increase of hydroxytyrosol, evidencing that bacterial strains could efficiently degrade oleuropein via a mechanism different from hydrolysis.

2005 ◽  
Vol 277-279 ◽  
pp. 155-161 ◽  
Author(s):  
Joung Han Yim ◽  
Se Hun Ahn ◽  
Sung Jin Kim ◽  
Yoo Kyung Lee ◽  
Kyu Jin Park ◽  
...  

To find a novel exopolysaccharide, marine bacterial strains were isolated from coastal regions of Korea. Strain 00SS11568 was then selected as it produced a mucous exopolysaccharide during the stationary phase in a batch culture. The isolate was identified as Alteromonas sp. based on its 16S rDNA sequence, morphological, and biochemical properties. The exopolysaccharide, designated as p-11568, exhibited an emulsifying ability. The Emulsification Index (E24) of 0.1% p- 11568 was 77.4% with an emulsified kerosene content, and was higher than those of commercial polysaccharides, such as xanthan gum (26.1%), gellan gum (1.3%), and sodium alginate (2.0%). p- 11568 was found to be composed of glucose and galactose as the main natural sugars in a molar ratio of 1.3:1, along with uronic acid (18.9%, w/w) and sulfate groups (1.2% w/w). The average molecular mass was 4.4 x 105 daltons by gel filtration chromatography. The effects of pH, temperature, inorganic compounds, and C and N sources were tested to obtain the optimal medium composition for the production of p-11568. Under optimal growth conditions with the M-11568 medium, 14.9 g of crude p-11568 per liter was obtained.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 195
Author(s):  
Alla A. Shulgina ◽  
Elena A. Kalashnikova ◽  
Ivan G. Tarakanov ◽  
Rima N. Kirakosyan ◽  
Mikhail Yu. Cherednichenko ◽  
...  

We investigated the influence of different conditions (light composition and plant growth regulators (PGRs) in culture media) on the morphophysiological parameters of Stevia rebaudiana Bertoni in vitro and in vivo. Both PGRs and the light spectra applied were found to significantly affect plant morphogenesis. During the micropropagation stage of S. rebaudiana, optimal growth, with a multiplication coefficient of 15, was obtained in an MS culture medium containing 2,4-epibrassinolide (Epin) and indole-3-acetic acid (IAA) at concentrations of 0.1 and 0.5 mg L−1, respectively. During the rooting stage, we found that the addition of 0.5 mg L−1 hydroxycinnamic acid (Zircon) to the MS medium led to an optimal root formation frequency of 85% and resulted in the formation of strong plants with well-developed leaf blades. Cultivation on media containing 0.1 mg L−1 Epin and 0.5 mg L−1 IAA and receiving coherent light irradiation on a weekly basis resulted in a 100% increase in the multiplication coefficient, better adventitious shoot growth, and a 33% increase in the number of leaves. S. rebaudiana microshoots, cultured on MS media containing 1.0 mg L−1 6-benzylaminopurine (BAP) and 0.5 mg L−1 IAA with red monochrome light treatments, increased the multiplication coefficient by 30% compared with controls (white light, media without PGRs).


2020 ◽  
Vol 203 (12) ◽  
pp. 43-49
Author(s):  
Varvara Bessonova ◽  
Ol'ga Cherepanova

Abstract. The purpose of this research was to introduce Ginkgo biloba into culture, to study the composition and properties of its biologically active compounds. Methods. We researched the optimal growth conditions for obtaining a viable tissue culture, such as: concentration of phytohormones and other organic and nonorganic substances in Murashige – Skoog medium and light hours. The effectiveness of the standard method of sodium hypochloride sterilization of young leaves and vegetative buds also was verified. As a result, of conducting the experiment we were able to grow a living callus from leaves of G. biloba. Based on this result we can conclude that these conditions are acceptable for high proliferative activity of the plant. We were studied the effect of phytohormones NAA, at a concentration of 0.5 ml and 6-BAP, at a concentration of 2.5 ml. Also, was selected the ideal planting material for callus production – young leaves that were more sensitive to treatment with hypochloride. This research serves as the foundation for future research not only for our laboratory, but also for other research groups. The callus can be used to clone specimens of G. bilobain greenhouses. It will be use to extract and study unique chemical compounds, such as ginkgolides, bilobalides and various terpenes, contained in the extract of plants of this group.


2023 ◽  
Vol 83 ◽  
Author(s):  
B. Mazhar ◽  
N. Jahan ◽  
M. Chaudhry ◽  
I. Liaqat ◽  
M. Dar ◽  
...  

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


2020 ◽  
Vol 10 (12) ◽  
pp. 4173 ◽  
Author(s):  
Runkai Wang ◽  
Baichun Wu ◽  
Jin Zheng ◽  
Hongkun Chen ◽  
Pinhua Rao ◽  
...  

In this study, we isolated seven strains (termed BY1–7) from polluted soil at an oil station and evaluated their abilities to degrade total petroleum hydrocarbons (TPHs). Following 16 rRNA sequence analysis, the strains were identified as belonging to the genera Bacillus, Acinetobacter, Sphingobium, Rhodococcus, and Pseudomonas, respectively. Growth characterization studies indicated that the optimal growth conditions for the majority of the strains was at 30 °C, with a pH value of approximately 7. Under these conditions, the strains showed a high TPH removal efficiency (50%) after incubation in beef extract peptone medium for seven days. Additionally, we investigated the effect of different growth media on growth impact factors that could potentially affect the strains’ biodegradation rates. Our results suggest a potential application for these strains to facilitate the biodegradation of TPH-contaminated soil.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 795
Author(s):  
Jean M. Mondo ◽  
Paterne A. Agre ◽  
Robert Asiedu ◽  
Malachy O. Akoroda ◽  
Asrat Asfaw

Yam (Dioscorea spp.) plants are mostly dioecious and sometimes monoecious. Low, irregular, and asynchronous flowering of the genotypes are critical problems in yam breeding. Selecting suitable pollen parents and preserving yam pollen for future use are potential means of controlling these constraints and optimizing hybridization practice in yam breeding programs. However, implementing such procedures requires a robust protocol for pollen collection and viability testing to monitor pollen quality in the field and in storage. This study, therefore, aimed at optimizing the pollen germination assessment protocol for yam. The standard medium composition was stepwisely modified, the optimal growth condition was tested, and in vivo predictions were made. This study showed that the differences in yam pollen germination percentage are primarily linked to the genotype and growing conditions (i.e., medium viscosity, incubation temperature, and time to use) rather than the medium composition. The inclusion of polyethylene glycol (PEG) in the culture medium caused 67–75% inhibition of germination in D. alata. Although the in vivo fertilization was dependent on female parents, the in vitro germination test predicted the percentage fruit set at 25.2–79.7% and 26.4–59.7% accuracy for D. rotundata and D. alata genotypes, respectively. This study provides a reliable in vitro yam pollen germination protocol to support pollen management and preservation efforts in yam breeding.


2021 ◽  
Author(s):  
A. D. Grabowska ◽  
N. Andreu ◽  
T. Cortes

Abstract Mycobacterium tuberculosis expresses a large number of leaderless mRNA transcripts; these lack the 5’ leader region, which usually contains the Shine-Dalgarno sequence required for translation initiation in bacteria. In M. tuberculosis, transcripts encoding proteins with secondary adaptive functions are predominantly leaderless and the overall ratio of leaderless to Shine-Dalgarno transcripts significantly increases during growth arrest, suggesting that leaderless translation might be important during persistence in the host. However, whether these two types of transcripts are translated with differing efficiencies during stress conditions that induce growth arrest and during optimal growth conditions, is unclear. Here, using bioluminescent reporter strains, we detect robust leaderless translation during exponential in vitro growth and we show that leaderless translation is more stable than Shine-Dalgarno translation during adaptation to stress conditions. Upon entrance into nutrient starvation and after nitric oxide exposure, leaderless translation is significantly less affected by the stress than Shine-Dalgarno translation. Similarly, during the early stages of infection of macrophages, the levels of leaderless translation are more stable than those of Shine-Dalgarno translation. These results suggest that leaderless translation may offer an advantage in the physiology of M. tuberculosis. Identification of the molecular mechanisms underlying this translational regulation may provide insights into persistent infection.


Author(s):  
Jared L. Dopp ◽  
Nigel F. Reuel

AbstractIn vitro expression of proteins from E. coli extract is a useful method for prototyping and production of cytotoxic or unnatural products. However, proteins that have multiple disulfide bonds require custom extract that, to date, requires careful addition of exogenous isomerase enzymes or the use of expensive commercial kits. This cost and complexity currently limit access to some groups who wish to rapidly prototype proteins with disulfide bonds. Herein, we present a simple solution that does not require addition of supplemental enzymes. We use a commercially available SHuffle T7 Express lysY strain of E. coli that expresses both T7 RNAP and DsbC isomerase enzymes. We experimentally determine optimal growth conditions (IPTG induction and harvest times) to balance overall productivity and efficiency of disulfide bond formation using a luciferase (from Gaussia princeps) that contains five disulfide bonds as our reporter protein. We also demonstrate the ability for rapid prototyping by screening the activity of four luciferase candidates against ten luciferin analogues. To display the broad applicability of the extract, three other enzymes containing ≥3 disulfide bonds (hevamine, endochitinase A, and periplasmic AppA) were also expressed from minimal genetic templates that had undergone rolling circle amplification and confirmed via activity assays.


2017 ◽  
Vol 9 (1) ◽  
pp. 370-374 ◽  
Author(s):  
Monidipta Saha ◽  
Rajib S. Rana ◽  
Biswanath Adhikary ◽  
Sabyasachi Mitra

In the present study, the pectatelyase production by fifty two bacterial strains isolated from ramie grown soils were studied and the strain RDSM01 showed maximum pectate lyase activity. According to sequence homology of Genbank, the strain RDSM01 was identified as Bacillus subtilis (Genbank Accession No. KX035109). Maximum pectate lyase activity of the strain was observed when 1.5% (v/v) inoculum was added to the growth medium and was incubated for 48 hours at 34-370C and at pH 7.0. The relative activity of the strain was 19% higher when apple pectin was used as carbon source compared to citrus pectin. Maximum enzyme production (149.1 – 153.4 IU/ml) was recorded when ammonium chloride or ammonium sulphate at 0.4% concentration was used as nitrogen source. Thus, B. subtilis strain RDSM01 possessing high pectate lyase activity may be effectively utilized for removal of gum from ramie fibre, which is primarily made of pectin and hemicellulose.


2007 ◽  
Vol 6 (5) ◽  
pp. 7290.2007.00026
Author(s):  
Okechukwu Ojogho ◽  
Alice Li ◽  
Craig W. Zuppan ◽  
Alan Escher

The growth and bioluminescence of cells seeded in collagen and gelatin sponge matrices were compared in vitro under different conditions, and immune rejection was quantified and visualized directly in situ based on loss of bioluminescence activity. Mammalian cells expressing a Renilla luciferase complementary deoxyribonucleic acid (cDNA) were used to seed collagen and gelatin sponge matrices soaked in either polylysine or gelatin to determine optimal growth conditions in vitro. The sponges were incubated in tissue culture plates for 3 weeks and received 2, 9, or 15 injections of coelenterazine. Measurements of bioluminescence activity indicated that gelatin sponges soaked in gelatin emitted the highest levels of light emission, multiple injections of coelenterazine did not affect light emission significantly, and light emission from live cells grown in sponges could be measured qualitatively but not quantitatively. Histologic analysis of sponge matrices cultured in vitro showed that cells grew best in gelatin matrices. Visualization of subcutaneously implanted sponges in mice showed accelerated loss of light emission in immunocompetent BALB/c mice compared with immunodeficient BALB/c- scid mice, which was associated with increased cell infiltration. Our results indicate that sponge matrices carrying bioluminescent mammalian cells are a valid model system to study immune rejection in situ.


Sign in / Sign up

Export Citation Format

Share Document