scholarly journals Chemical and Physical Characteristics in Uncultivated Soils with Different Lithology in Semiarid Mediterranean Clima

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Daniel Moraetis ◽  
Nikolaos Lydakis-Simantiris ◽  
Despina Pentari ◽  
Emmanouil Manoutsoglou ◽  
Chryssa Apostolaki ◽  
...  

The aim of this study is to identify the chemical and physical characteristics in uncultivated soils derived from different parent materials under semiarid Mediterranean climatic conditions which favoured the formation of fragile soils. The current work is of great interest in the agriculture and environmental stakeholders for providing a “benchmark” of undisturbed soil quality regarding organic content and nutrients availability. Principal Component Analysis (PCA) was used as the primary tool to demonstrate the soil quality stage, regarding nutrient availability. The statistical analysis revealed that one of the major physicochemical characteristics such as cation exchange capacity (CEC) is controlled exclusively from mineralogy and not from organic matter. Mineralogy and bulk chemical analysis is directly related to soil parent material lithology. The availability of inorganic nutrients (macro- and micronutrients) is low and relatively identical to most of the soils. PCA shows the unusual correlation of K+with not only illite content but also the OM in soils. The development of soils which are already of low quality in respect of organic content and nutrients is evident in Crete in most of the 54 samples investigated.

CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Elaine Novak ◽  
Laércio Alves Carvalho ◽  
Etenaldo Felipe Santiago ◽  
Irzo Isaac Rosa Portilho

ABSTRACT A challenge for the environmental recovery of degraded areas is the search for soil data. In this process, the microbiological parameters and soil chemicals are potential indicators of soil quality. This study aimed to evaluate soil quality based on microbiological and chemical soil attributes in different areas involving environmental recovery, sugarcane cultivation and remnants of native vegetation located in a rural private property farm in State of Mato Grosso do Sul, Brazil, in Hapludox Eutrophic soil. The microbiological (microbial biomass carbon, basal respiration, microbial quotient and metabolic quotient) and chemical parameters (organic matter, carbon, pH, cationic exchange capacity, sum of bases, potassium, phosphorus, magnesium, calcium, saturation base and potential acidity) were assessed. Data were assessed by variance and multivariate analysis (Principal Component Analysis and cluster analysis). Overall, the results showed highest alteration in the chemical and microbiological characteristics of the soil in sugarcane cultivation area in comparison with other areas. Considering the studied recovery areas, REC1, REC5 and REC7 show chemical and microbiological conditions with most similarity to native vegetation. Despite the short period of the resilience enhancement of environmental recovery areas, the development of vegetation cover and establishment of the microbial community were determined to be important factors for improving soil quality and environmental recovery in several of the areas studied.


Land ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 63 ◽  
Author(s):  
Sheikh Adil Edrisi ◽  
Vishal Tripathi ◽  
Purushothaman Chirakkuzhyil Abhilash

The successful utilization of marginal and degraded lands for biomass and bioenergy production depends upon various factors such as climatic conditions, the adaptive traits of the tree species and their growth rate and respective belowground responses. The present study was undertaken to evaluate the growth performance of a bioenergy tree (Dalbergia sissoo Roxb.) grown in marginal and degraded land of the Mirzapur district of Uttar Pradesh, India and to analyze the effect of D. sissoo plantations on soil quality improvement over the study years. For this, a soil quality index (SQI) was developed based on principal component analysis (PCA) to understand the effect of D. sissoo plantations on belowground responses. PCA results showed that among the studied soil variables, bulk density (BD), moisture content (MC), microbial biomass carbon (MBC) and soil urease activity (SUA) are the key variables critically influencing the growth of D. sissoo. The SQI was found in an increasing order with the growth period of D. sissoo. (i.e., from 0.419 during the first year to 0.579 in the fourth year). A strong correlation was also observed between the growth attributes (diameter at breast height, R2 = 0.870; and plant height, R2 = 0.861) and the soil quality (p < 0.01). Therefore, the developed SQI can be used as key indicator for monitoring the restoration potential of D. sissoo growing in marginal and degraded lands and also for adopting suitable interventions to further improve soil quality for multipurpose land restoration programs, thereby attaining land degradation neutrality and United Nations Sustainable Development Goals.


2015 ◽  
Vol 63 (4) ◽  
pp. 353
Author(s):  
A. El Ghalabzouri ◽  
R. Ajbilou ◽  
M. G. Mariotti ◽  
K. Targuisti ◽  
M. Ater

Vegetation and soil sampling were undertaken in 47 relevés in two different sites in Beni Bousera (northern Morocco), 32 relevés were on ultramafic sites (peridotite) and 15 were on adjacent non-ultramafic soils (mica-schist). Soil composition of exchangeable elements (nickel, calcium, magnesium, calcium : magnesium ratio, iron, copper) and physicochemical characteristics (e.g. pH, cation exchange capacity, conductivity, carbonate) were investigated and the species composition and cover were recorded. Although there was a significant difference between the two types of soil shown by Student’s t-test and principal component analysis, the ‘serpentine factor’ can be considered moderate on the basis of the observed heavy metal concentrations and of the related calcium : magnesium ratio. Correspondence and canonical analysis were used to detect the principal factors associated with gradients in species composition. This analysis showed a clear differentiation of vegetation among the plant communities. Preferential or strict serpentinophyte species were recognised, whereas no hyperaccumulator species have yet been found.


Soil Research ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 20 ◽  
Author(s):  
Nirmalendu Basak ◽  
Ashim Datta ◽  
Tarik Mitran ◽  
Satadeep Singha Roy ◽  
Bholanath Saha ◽  
...  

Rice-based cropping systems are the foundation of food security in countries of Southeast Asia, but productivity of such systems has declined with deterioration in soil quality. These systems are different from other arable systems because rice is grown under submergence, and this may require a different set of key soil attributes for maintenances of quality and productivity. A minimum dataset was screened for assessing quality of soils belonging to three Soil Orders (Inceptisols, Entisols and Alfisols) by using statistical and mathematical models and 27 physical, chemical and biological attributes. Surface soils were collected from farmers’ fields under long-term cultivation of rice–potato–sesame cropping systems. Most of the attributes varied significantly among the Soil Orders used. Four or five key attributes were screened for each Soil Order through principal component and discriminate analysis, and these explained nearly 80% and 90% of the total variation in each Soil Order dataset. The attributes were dehydrogenase activity (DHA), available K, cation exchange capacity (CEC) and pHCa for Inceptisols; organic C, pHCa, bulk density, nitrogen mineralisation (Nmin) and β-glucosidase for Entisols; and DHA, very labile C, Nmin and microbial biomass C for Alfisols. Representation of the screened attributes was validated against the equivalent rice yield of the studied system. Among the selected key soil attributes, DHA and CEC for Inceptisols, organic C for Entisols, and Nmin and very labile C for Alfisols were most strongly correlated with system yield (R2 = 0.45, 0.77 and 0.78). Results also showed that biological and chemical attributes were most sensitive for indicating the differences in soil quality and have a strong influence on system yield, whereas soil physical attributes largely varied but did not predict system yield.


2021 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Salwinder Singh Dhaliwal ◽  
Vivek Sharma ◽  
Janpriya Kaur ◽  
Arvind Kumar Shukla ◽  
Akbar Hossain ◽  
...  

The agricultural production in Punjab has increased manifold that aggravated the deficiencies of micronutrients in soils and plants. The availability of soil micronutrients in different soil orders depends upon the soil mineralogy, topography, climatic conditions and cropping sequences. Hence, to study the pedospheric variations of DTPA-extractable micronutrients, viz., zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu), in three prominent soil orders of Punjab, a total of 144 depth-wise soil samples were collected from four major land-use systems (cultivated, horticulture, forest and pasture lands). The DTPA extractable micronutrients varied from 1.74–2.81, 1.83–2.82 and 1.81–2.80 for Zn; 5.3–6.8, 5.6–6.9, 4.3–6.3 for Fe; 5.1–7.8, 5.5–7.9, 5.4–7.5 for Mn; and 0.84–1.40, 0.93–1.68, 0.87–1.65 for Cu in soil orders Aridisol, Entisol and Inceptisol, respectively. The average content of DTPA-extractable micronutrients was highest under soil order Entisol followed by Inceptisol and Aridisol. The content of micronutrients showed a declining trend with increase in soil depth in all orders. Among different soil properties, the pH and EC showed significantly negative correlation, however, OC had non-significant correlation with DTPA-extractable micronutrients in soils. Therefore, it is concluded that parent material, land use systems and soil depth affected the distribution of DTPA extractable micronutrients in different soil orders.


2020 ◽  
Vol 41 (6) ◽  
pp. 1655-1664
Author(s):  
A. Gayan ◽  
◽  
D.J. Nath ◽  
B. Bhattacharyya ◽  
N. Dutta ◽  
...  

Aim: To assess the soil quality indices and its impact on rice yield in Upper Brahmaputra Valley Zone of Assam. Methodology: Seventy-three numbers of geo referenced soil samples were collected from the rice ecosystems and analysed for twenty-one soil physical, chemical and biological parameters. The soil quality indices (SQI) were developed using statistical tools like principal component analysis (PCA) techniques and expert opinion (EO). Relative soil quality index (RSQI) was also developed for grouping the soils into categories. Correlation matrices were drawn between different soil quality indices. The optimum values of soil quality indices were computed to sustain 80% or more of the existing in field maximum rice yield (5.20 t ha-1). Results: Multivariate statistics showed that four biological parameters viz., fluorescein di-acetate activity, phosphate solubilising bacteria, total bacterial population and collembolan population and three chemical parameters viz., cation exchange capacity, electrical conductivity? and diethylene tri amine penta acetic acid-Zinc could explain 70.2% of the cumulative variance. RSQI demonstrated that >50% and >30% of soils belonged to medium and good category. The regression of percent relative rice yield obtained from farmers field, illustrated that soil functions based EO-SQI could explain high degree of relationship (R2=0.289; r=0.537*), followed by RSQI (R2=0.284;r=0.532*) and PCA-SQI (R2=0.143; r=0.378*) to explain the variability of soils. The optimum value indicates that the rice soils having PCA-SQI value >0.55 were likely to give 80% or more of the maximum yield of UBVZ of Assam. Interpretation: Approaches of rating of soil quality based on PCA-SQI may be a useful tool, and there is need of more extensive investigations to validate its usefulness for assessment of soil quality in different cropping sequences of Assam.


2021 ◽  
Vol 94 (1) ◽  
pp. 91-109
Author(s):  
Gaurav Mishra ◽  
Jesús Rodrigo-Comino

n the Northeast Himalayas (NEH) region, four major conventional land-use types are forest, Jhum lands, fallow Jhum lands and plantations, but little is known about their sustainability and responses to changes. We collected soil samples at two uniform depths (0-15 and 15-30 cm) from the Zunheboto district of Nagaland (India). The dataset was statistically analyzed by conducting an ANOVA-one way, principal component analysis (PCA) and calculating an additive soil quality index (SQIa). Our results confirmed that sand content, bulk density (BD), porosity, soil organic carbon (SOC), cation exchange capacity (CEC), exchangeable calcium and potassium showed significant statistical differences among soil depths depending on the land use management. PCA results showed that soil texture, BD, porosity, SOC and exchangeable cations could be consideredthe major indicators to define soil quality. After estimating the SQIa, Jhum soils showed the highest values at the surface, while at 15-30 cm soil depth, fallow Jhum soils phase showed the highest ones. The conversion from natural forest to plantation does not hamper the SQ, but their conversion into Jhum may even increase it, for a shorter duration. However, after 1-2 year of cultivation and conversion from Jhum into fallow Jhum land, soil quality could be reduced.


Author(s):  
B. Bhakiyathu Saliha ◽  
R. Indrani ◽  
C. Priyanka

The present research investigation was taken up  during 2017-2019 to evaluate the properties and fertility status of soils through physical, chemical and biological indicators of soil quality in the major pulse growing regions which were classified into three categories viz., low yielding (< 400kg ha-1), medium (400 to 700 kg ha-1) and high yielding (> 700 kg ha-1). 300 samples collected from these zones were subjected to analysis and weight ages were assigned to each soil quality attribute through Principal Component Analysis (PCA) and those that explain at least 5% of the variation in the data were examined by using SPSS software. The mean percentage of water stable aggregates was the highest (51%) in high yielding soils which can be attributed to the beneficial effect of organic manure application and balanced fertilizer usage. Most of the samples in the high yielding soils were neutral to slightly alkaline (pH of 7.20 to 7.85), while that of medium and low yielding soils were  moderately alkaline and neutral to slightly alkaline respectively. However low yield category had an average cation exchange capacity of 12.2 c mol (p+) kg-1, whereas that of medium and high yield  categories recorded 21.8 and 36.9 c mol (p+) kg-1 respectively. The soils of high, medium and low yield zones recorded 282,234 and 138 kg ha-1 of available nitrogen respectively. The sulphur status in pulse growing soils revealed deficiency in 88 percent of the samples from low yielding zones which needs due attention. The overall results of the study concluded that the higher values of soil attributes such as aggregate stability, cation exchange capacity, organic carbon, available nitrogen, available potassium and extractable micronutrients corresponded well with the high yield category indicating the importance of these soil quality indicators for improving the pulse productivity in low yield zones.


Author(s):  
Arezki Tagnit-Hamou ◽  
Shondeep L. Sarkar

All the desired properties of cement primarily depend on the physicochemical characteristics of clinker from which the cement is produced. The mineralogical composition of the clinker forms the most important parameter influencing these properties.Optical microscopy provides reasonably accurate information pertaining to the thermal history of the clinker, while XRDA still remains the proven method of phase identification, and bulk chemical composition of the clinker can be readily obtained from XRFA. Nevertheless, all these microanalytical techniques are somewhat limited in their applications, and SEM/EDXA combination fills this gap uniquely by virtue of its high resolution imaging capability and possibility of instantaneous chemical analysis of individual phases.Inhomogeneities and impurities in the raw meal, influence of kiln conditions such as sintering and cooling rate being directly related to the microstructure can be effectively determined by SEM/EDXA. In addition, several physical characteristics of cement, such as rhcology, grindability and hydraulicity also depend on the clinker microstructure.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 612
Author(s):  
Vânia Silva ◽  
Sandra Pereira ◽  
Alice Vilela ◽  
Eunice Bacelar ◽  
Francisco Guedes ◽  
...  

Sweet cherry (Prunus avium L.) is a fruit appreciated by consumers for its well-known physical and sensory characteristics and its health benefits. Being an extremely perishable fruit, it is important to know the unique attributes of the cultivars to develop cultivation or postharvest strategies that can enhance their quality. This study aimed to understand the influence of physicochemical characteristics of two sweet cherry cultivars, Burlat and Van, on the food quality perception. Several parameters (weight, dimensions, soluble solids content (SSC), pH, titratable acidity (TA), colour, and texture) were measured and correlated with sensory data. Results showed that cv. Van presented heavier and firmer fruits with high sugar content. In turn, cv. Burlat showed higher pH, lower TA, and presented redder and brightest fruits. The principal component analysis revealed an evident separation between cultivars. Van cherries stood out for their sensory parameters and were classified as more acidic, bitter, and astringent, and presented a firmer texture. Contrarily, Burlat cherries were distinguished as being more flavourful, succulent, sweeter, and more uniform in terms of visual and colour parameters. The results of the sensory analysis suggested that perceived quality does not always depend on and/or recognize the quality parameters inherent to the physicochemical characteristics of each cultivar.


Sign in / Sign up

Export Citation Format

Share Document