scholarly journals The Pedospheric Variation of DTPA-Extractable Zn, Fe, Mn, Cu and Other Physicochemical Characteristics in Major Soil Orders in Existing Land Use Systems of Punjab, India

2021 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Salwinder Singh Dhaliwal ◽  
Vivek Sharma ◽  
Janpriya Kaur ◽  
Arvind Kumar Shukla ◽  
Akbar Hossain ◽  
...  

The agricultural production in Punjab has increased manifold that aggravated the deficiencies of micronutrients in soils and plants. The availability of soil micronutrients in different soil orders depends upon the soil mineralogy, topography, climatic conditions and cropping sequences. Hence, to study the pedospheric variations of DTPA-extractable micronutrients, viz., zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu), in three prominent soil orders of Punjab, a total of 144 depth-wise soil samples were collected from four major land-use systems (cultivated, horticulture, forest and pasture lands). The DTPA extractable micronutrients varied from 1.74–2.81, 1.83–2.82 and 1.81–2.80 for Zn; 5.3–6.8, 5.6–6.9, 4.3–6.3 for Fe; 5.1–7.8, 5.5–7.9, 5.4–7.5 for Mn; and 0.84–1.40, 0.93–1.68, 0.87–1.65 for Cu in soil orders Aridisol, Entisol and Inceptisol, respectively. The average content of DTPA-extractable micronutrients was highest under soil order Entisol followed by Inceptisol and Aridisol. The content of micronutrients showed a declining trend with increase in soil depth in all orders. Among different soil properties, the pH and EC showed significantly negative correlation, however, OC had non-significant correlation with DTPA-extractable micronutrients in soils. Therefore, it is concluded that parent material, land use systems and soil depth affected the distribution of DTPA extractable micronutrients in different soil orders.

2020 ◽  
pp. 6-12
Author(s):  
Tahsina Sharmin Hoque ◽  
Shafia Afrin ◽  
Israt Jahan ◽  
Md. Joinul Abedin Mian ◽  
Mohammad Anwar Hossain

Soil depth can significantly influence the availability of nutrients in soil. An experiment was conducted with seven soil samples from seven land use types to observe the effect of soil depth on soil properties under various land use systems. Soil pH, electrical conductivity (EC), organic matter, available phosphorus (P), available sulphur (S) and different forms of potassium (K) such as water soluble, exchangeable and non-exchangeable were determined from the soil samples collected from four soil depths (viz. 0-10, 10-20, 20-30 and 30-40 cm). Soil pH varied from 6.30-7.39 irrespective of depths and land uses and it increased with increasing soil depth. Electrical conductivity of the soils ranged from 42-310 µS cm-1 and organic matter status of most of the soils was very low to medium in level. Both EC and organic matter content decreased with the increase of soil depth. Available P concentration showed no specific changing trend with soil depth whereas available S concentration under different land use systems decreased with increasing soil depth. The concentrations of water soluble, exchangeable and non-exchangeable K in soils varied from 12.30-39.60, 20.90-53.16 and 163.30-684.30 mg kg-1, respectively and showed no specific changing pattern with soil depth. Water soluble K content was higher in rice growing fertilizer and manure-treated soil but higher exchangeable and non-exchangeable K contents were observed in banana growing soil. In rice growing soils, nutrient concentration is mostly higher in nitrogen (N), P and K + farm yard manure (FYM) - treated plots compared to rice growing control plots.


2020 ◽  
Author(s):  
Yadesa Bato ◽  
Tamrat Bekele ◽  
Sebsebe Demissew

Abstract Background: Soil chemical properties have changed under different land-use systems and soil depth layers either by increasing or decreasing. Hence, scientifically information on the soil chemical properties dynamics under different land-use systems and soil depths are crucial for best land management practices, and to avoiding ecological negative impacts of it for sustainable development. The study aimed to evaluate the soil chemical properties dynamics under different land-use systems and soil depths in the central highlands of Ethiopia. The land-use systems included natural forest, four exotic tree plantation species (Eucalyptus globules, Cupressus lusitanica, Grevillea robusta, and Pinus patula), grassland, grazing land, and cropland. Results: The analysis of variance (ANOVA) for the majority of soil chemical properties of OC, TN, Avial. P, soil pH, EC, CEC, and exchangeable bases (Ca, Mg, K, Na) were showed that significant variations among land-use systems (P<0.0001). The highest mean values of OC (3.49 % DM ), TN ( 0.31 % DM) , Avail.P (31.52 mg/kg of soil ), CEC ( 33.63 meq/100gm soil), Exch. Ca (17.13 cmol(+)/kg soil), Exch. Mg (5.37 cmol(+)/kg soil), and Exch. K ( 3.60 cmol(+)/kg soil) were observed under natural forest than others of land-use systems. The results also showed that the lowest mean values of OC (1.47 % DM), TN (0.13 %DM), soil pH (5.38), CEC (18.98 meq/100gm soil), Exch. Ca (9.93 cmol(+)/kg soil), Exch. K (1.20 cmol(+)/kg soil), and Exch. Na (0.22 cmol(+)/kg soil) were recorded under cropland than other land-use systems. The highest mean values of EC (3.47ds/m), and Exch. Na (0.60 cmol(+)/kg soil) were observed under Eucalyptus globulus plantation forest. The overall mean values of OC, TN, Avail.P, CEC, Exch. Mg, Exch. Ca, Exch. K, and Exch. Na accumulation at the topsoil layer was higher than that of the subsoil layer except for soil pH and EC. Conclusion: In general, the majority of soil chemical properties under cropland and Eucalyptus globulus plantation forest were poorer than the soils subjected to other land-use systems which indicated that changes in land use systems were significantly affected soil chemical properties.


2020 ◽  
Vol 2 (1) ◽  
pp. 34-39
Author(s):  
Gladys M. Akande ◽  
◽  
Peace Adeona Adedamola ◽  

Author(s):  
Aleksey Rusakov ◽  
Yulia Simonova ◽  
Aleksandr Ryumin ◽  
A. Popov ◽  
Natalya Lemeshko

The assessment of the agricultural production potential of the soils of the former arable lands was carried out on the basis of the updated soil-ecological index. It was revealed that among the agrosoils of Poshekhonsk district, soils with 20-39 points prevail, which generally indicates low and medium levels of potential soil fertility in the studied area in the late perestroika period. Comparison of morphological and genetic properties of soils for the period 1988-1990 and for 2019 showed the trends of their evolutionary changes. Multidirectional trends in the transformation of soil properties, developed on a contrasting lithogenic parent rocks, with a change in land use during the last 30-35-year period have been established. In loamy soils, stable hydromorphism features are observed everywhere, degradation processes prevail, expressed in dehumification, a sharp depletion of mobile forms of mineral nutrition elements of plants and, in some cases, acidification of humus postagrogenic horizons. It has been established that fallow soils on loamy parent material are characterized by a noticeable (by 1.1-1.9 times) decrease in the values of soil-ecological index in comparison with their arable state. On the contrary, in soils of light particle size distribution, the dominant processes are due to an increase in humus content and a decrease in acidity. The specificity of postagrogenic evolution and the emergence of new soil properties should be taken into account when performing soil-agroecological assessments and forecasting agricultural production potential against the background of changed climatic conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Daniel Moraetis ◽  
Nikolaos Lydakis-Simantiris ◽  
Despina Pentari ◽  
Emmanouil Manoutsoglou ◽  
Chryssa Apostolaki ◽  
...  

The aim of this study is to identify the chemical and physical characteristics in uncultivated soils derived from different parent materials under semiarid Mediterranean climatic conditions which favoured the formation of fragile soils. The current work is of great interest in the agriculture and environmental stakeholders for providing a “benchmark” of undisturbed soil quality regarding organic content and nutrients availability. Principal Component Analysis (PCA) was used as the primary tool to demonstrate the soil quality stage, regarding nutrient availability. The statistical analysis revealed that one of the major physicochemical characteristics such as cation exchange capacity (CEC) is controlled exclusively from mineralogy and not from organic matter. Mineralogy and bulk chemical analysis is directly related to soil parent material lithology. The availability of inorganic nutrients (macro- and micronutrients) is low and relatively identical to most of the soils. PCA shows the unusual correlation of K+with not only illite content but also the OM in soils. The development of soils which are already of low quality in respect of organic content and nutrients is evident in Crete in most of the 54 samples investigated.


2013 ◽  
Vol 10 (3) ◽  
pp. 1675-1691 ◽  
Author(s):  
M. Schrumpf ◽  
K. Kaiser ◽  
G. Guggenberger ◽  
T. Persson ◽  
I. Kögel-Knabner ◽  
...  

Abstract. Conceptual models suggest that stability of organic carbon (OC) in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF) were analysed for OC, total nitrogen (TN), δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates) as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC) matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age) of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and nutrient source for subsurface microorganisms throughout the profile. Declining specific mineralization rates with soil depth confirm greater stability of OC in subsoils across sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining specific mineralization rates with increasing contributions of HF-OC to bulk soil OC, and the low Δ14C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. While quantitatively less important than OC in the HF, consistent older ages of oLF-OC than fLF-OC suggest that occlusion of LF-OC in aggregates also contributes to OC stability in subsoils. Overall, our results indicate that association with minerals is the most important factor in stabilization of OC in soils, irrespective of vegetation, soil type, and land use.


Author(s):  
Olha Dorosh ◽  
Iryna Kupriyanchik ◽  
Denys Melnyk

The land and town planning legislation concerning the planning of land use development within the united territorial communities (UTC) is considered. It is found that legislative norms need to be finalized. The necessity of updating the existing land management documentation developed prior to the adoption of the Law of Ukraine "On Land Management" and changes in the structure of urban development in connection with the adoption of the Law of Ukraine "On Regulation of Urban Development" was proved as they do not ensure the integrity of the planning process within the territories of these communities through their institutional incapacity (proved by the example of the Palan Unified Territorial Community of the Uman district of the Cherkasy region). The priority of land management and urban planning documents as the most influential tools in planning the development of land use systems in UTC is scientifically grounded and their interdependence established.


2014 ◽  
Vol 32 (3) ◽  
pp. 507-513
Author(s):  
R.O. Adereti ◽  
F.O Takim ◽  
Y.A. Abayomi

An experiment was laid down in a screen house to determine the distribution of weed seeds at different soil depths and periods of cultivation of sugarcane in Ilorin, Nigeria. Soil samples from different depth levels (0-10 cm, 11-20 cm and 21-30 cm) were collected after harvesting of canes from three different land use fields (continuous sugarcane cultivation for > 20 years, continuous sugarcane cultivation for < 10 years after long fallow period and continuous sugarcane cultivation for < 5 years after long fallow period) in November, 2012. One kilogram of the sieved composite soil samples was arranged in the screen house and watered at alternate days. Germinating weed seedlings were identified, counted and then pulled out for the period of 8 months. Land use and soil depth had a highly significant (p £ 0.05) effect on the total number of weeds that emerged from the soil samples. The 010 cm of the soil depth had the highest weed seedlings that emerged. There was an equal weed seed distribution at the 11-20 cm and 21-30 cm depths of the soil. Sugarcane fields which have been continuously cultivated for a long period of time with highly disturbing soil tillage practices tend to have larger seed banks in deeper soil layers (11-20 cm and 21-30 cm) while recently opened fields had significantly larger seed banks at the 0-10 cm soil sampling depth.


2021 ◽  
Vol 13 (3) ◽  
pp. 1398
Author(s):  
Tavjot Kaur ◽  
Simerpreet Kaur Sehgal ◽  
Satnam Singh ◽  
Sandeep Sharma ◽  
Salwinder Singh Dhaliwal ◽  
...  

The present study was conducted to investigate the seasonal effects of five land use systems (LUSs), i.e., wheat–rice (Triticum aestivum—Oryza sativa) system, sugarcane (Saccharum officinarum), orange (Citrus sinensis) orchard, safeda (Eucalyptus globules) forest, and grassland, on soil quality and nutrient status in the lower Satluj basin of the Shiwalik foothills Himalaya, India. Samples were analyzed for assessment of physico-chemical properties at four soil depths, viz., 0–15, 15–30, 30–45, and 45–60 cm. A total of 120 soil samples were collected in both the seasons. Soil texture was found to be sandy loam and slightly alkaline in nature. The relative trend of soil organic carbon (SOC), macro- and micro-nutrient content for the five LUSs was forest > orchard > grassland > wheat–rice > sugarcane, in the pre- and post-monsoon seasons. SOC was highly correlated with macronutrients and micronutrients, whereas SOC was negatively correlated with soil pH (r = −0.818). The surface soil layer (0–15 cm) had a significantly higher content of SOC, and macro- and micro-nutrients compared to the sub-surface soil layers, due to the presence of more organic content in the soil surface layer. Tukey’s multiple comparison test was applied to assess significant difference (p < 0.05) among the five LUSs at four soil depths in both the seasons. Principle component analysis (PCA) identified that SOC and electrical conductivity (EC) were the most contributing soil indicators among the different land use systems, and that the post-monsoon season had better soil quality compared to the pre-monsoon season. These indicators helped in the assessment of soil health and fertility, and to monitor degraded agroecosystems for future soil conservation.


Sign in / Sign up

Export Citation Format

Share Document