scholarly journals Acoustic Absorption of Natural Fiber Composites

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hasina Mamtaz ◽  
Mohammad Hosseini Fouladi ◽  
Mushtak Al-Atabi ◽  
Satesh Narayana Namasivayam

The current study is a bibliographic observation on prevailing tendencies in the development of acoustic absorption by natural fiber composites. Despite having less detrimental environmental effects and thorough availability, natural fibers are still unsuitable for wide implementation in industrial purposes. Some shortcomings such as the presence of moisture contents, thicker diameter, and lower antifungus quality hold up the progress of natural fiber composites in staying competitive with synthetic composites. The review indicates the importance of the pretreatment of fresh natural fiber to overcome these shortcomings. However, the pretreatment of natural fiber causes the removal of moisture contents which results in the decrease of its acoustic absorption performance. Incorporation of granular materials in treated fiber composite is expected to play a significant role as a replacement for moisture contents. This review aims to investigate the acoustic absorption behavior of natural fiber composites due to the incorporation of granular materials. It is intended that this review will provide an overview of the analytical approaches for the modeling of acoustic wave propagation through the natural fiber composites. The possible influential factors of fibers and grains were described in this study for the enhancement of low frequency acoustic absorption of the composites.

2014 ◽  
Vol 592-594 ◽  
pp. 1195-1199
Author(s):  
Ashwin Sailesh ◽  
C. Shanjeevi ◽  
J.Jeswin Arputhabalan

The developments in the field of composite materials are growing tremendously day by day. One such development is the use of natural fibers as reinforcement in the composite material. This is attributed to the fact that natural fibers are environmental friendly, economical, easily available and non-abrasive. Mixing of natural fiber with Glass Fibers is finding increased applications. In this present investigation Banana – Bamboo – Glass fiber reinforced natural fiber composites is fabricated by Hand – Layup technique with varying fiber orientation such as [0°G, 90°BM, 0°BN, 0°G], [0°G, 0°BM, +45°BN, 0°G] and [0°G, 0°BM, 90°BN, 0°G] and are tested for its tensile strength. The tensile strength of the fabricated composites is evaluated. The results indicated that the natural fiber composite with the fiber orientation of [0°G, 0°BM, 90°BN, 0°G] can withstand more load when compared to the samples with other fiber orientation. Nomenclature Used: BN – Banana fiber BM – Bamboo fiber G – Glass fiber


Fibers ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 62
Author(s):  
Mike R. Bambach

Recent decades have seen substantial interest in the use of natural fibers in continuous fiber reinforced composites, such as flax, jute and hemp. Considering potential applications, it is of particular interest how natural fiber composites compare to synthetic fiber composites, such as glass and carbon, and if natural fibers can replace synthetic fibers in existing applications. Many studies have made direct comparisons between natural and synthetic fiber composites via material coupon testing; however, few studies have made such direct comparisons of full structural members. This study presents compression tests of geometrically identical structural channel sections fabricated from fiber-epoxy composites of flax, jute, hemp, glass and carbon. Glass fiber composites demonstrated superior tension material coupon properties to natural fiber composites. However, for the same fiber mass, structural compression properties of natural fiber composite channels were generally equivalent to, or in some cases superior to, glass fiber composite channels. This indicates there is substantial potential for natural fibers to replace glass fibers in structural compression members. Carbon fiber composites were far superior to all other composites, indicating little potential for replacement with natural fibers.


2018 ◽  
Vol 22 (3) ◽  
pp. 525-550 ◽  
Author(s):  
ES Zaini ◽  
MD Azaman ◽  
MS Jamali ◽  
KA Ismail

Researchers have worked on variety of natural fibers reinforced with polymer composites using different parameters to come up with various recommendations. The investigation involved aspects of composition materials and mechanical properties of natural fiber composites. The satisfactory results of natural fiber composites have encouraged researchers to delve deeper into the abilities of natural fiber composite in the form of a core structure. The potentiality of utilizing natural fiber composite in core design has wide potential in modern industries. This paper presents a review on natural fibers and polymer matrices commonly used in core fabrication, core design, fabricating processes of cores, and mechanical properties of cores. Ongoing research of rice husk composites to be fabricated in the form of honeycomb core structures is also discussed.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2220
Author(s):  
Zaida Ortega ◽  
Francisco Romero ◽  
Rubén Paz ◽  
Luis Suárez ◽  
Antonio Nizardo Benítez ◽  
...  

This paper compares the mechanical properties of different natural fiber composites produced by rotational molding as a way of waste valorization from campaigns to control invasive plant species in Macaronesia. Rotomolded parts produced with polymeric matrices (polyethylene) and filled with up to 20% by weight of cellulosic fibers obtained from Arundo donax L., Pennisetum setaceum, and Ricinus communis plants were characterized in terms of tensile, flexural, and impact strength. It was found that the sieving of natural fibers allowed for their introduction in higher loadings, from 10 (for un-sieved material) to 20%; fiber size greatly affected the mechanical properties of the final parts, although some combinations were proven not to reduce the mechanical properties of the neat resin. This study is a first approach to the valorization of residues obtained from periodic campaigns of the control of invasive species performed by public authorities, usually at the local level. It is important to highlight that the main objective of this research did not focus on economically profitable activity; instead, it was focused on the reduction of wastes to be disposed from ecosystem maintenance actions and the investment of potential income into preservation policies.


Author(s):  
Faris M. AL-Oqla

The available potential plant waste could be worthy material to strengthen polymers to make sustainable products and structural components. Therefore, modeling the natural fiber polymeric-based composites is currently required to reveal the mechanical performance of such polymeric green composites for various green products. This work numerically investigates the effect of various fiber types, fiber loading, and reinforcement conditions with different polymer matrices towards predicting the mechanical performance of such natural fiber composites. Cantilever beam and compression schemes were considered as two different mechanical loading conditions for structural applications of such composite materials. Finite element analysis was conducted to modeling the natural fiber composite materials. The interaction between the fibers and the matrices was considered as an interfacial friction force and was determined from experimental work by the pull out technique for each polymer and fiber type. Both polypropylene and polyethylene were considered as composite matrices. Olive and lemon leaf fibers were considered as reinforcements. Results have revealed that the deflection resistance of the natural fiber composites in cantilever beam was enhanced for several reinforcement conditions. The fiber reinforcement was capable of enhancing the mechanical performance of the polymers and was the best in case of 20 wt.% polypropylene/lemon composites due to better stress transfer within the composite. However, the 40 wt.% case was the worst in enhancing the mechanical performance in both cantilever beam and compression cases. The 30 wt.% of polyethylene/olive fiber was the best in reducing the deflection of the cantilever beam case. The prediction of mechanical performance of natural fiber composites via proper numerical analysis would enhance the process of selecting the appropriate polymer and fiber types. It can contribute finding the proper reinforcement conditions to enhance the mechanical performance of the natural fiber composites to expand their reliable implementations in more industrial applications.


2018 ◽  
Vol 1148 ◽  
pp. 61-71 ◽  
Author(s):  
V. Joshua Jaya Prasad ◽  
Puli Suresh Kumar

Recently, there has been an exponential growth in research and innovation in the natural fiber composites (NFC) due to their diversified applications in the field of engineering. Biodegradability, light weight, formability and availability at low cost are the attractive merits of the natural fibers. Mechanical, Thermal and Machinabilty properties of Natural fiber composites have their own advantage and adoptability in the field of automobile, power plants, aeronautical, defense and naval applications. This review aims to provide an overview of the comparison of differ types of Natural fiber composites, factors that affect the mechanical, thermal and machinabilty of NFCs and their engineering applications.


2016 ◽  
Vol 854 ◽  
pp. 59-64
Author(s):  
S. Syath Abuthakeer ◽  
Ramakrishnan Vasudaa ◽  
Afsana Nizamudeen

Today’s technological innovations call for continual improvement in the field of material science to substitute the heavy structures with lightweight materials without compromising the strength. For this purpose composite materials (combination of two or more materials) are developed. The incorporation of natural fibers as reinforcing agent in both thermoset and thermoplastic polymer composites has gained increasing applications both in many areas of engineering and technology. A variety of natural fibers based polymer composite materials have been developed using modified synthetic strategies to extend its application from automotive to biomedical fields. The eco friendliness and reduction in wear and tear aspects in machineries with the use of natural fiber composites also has been captured in this paper. This paper is an earnest compilation of the data regarding a variety of natural fibers, their physical and mechanical properties, their resilience and strength. Considerable effort has been put in bringing the data on various natural fiber composites in one place by cutting out the details from various sources so as to make it as a ready reckoner for any researcher for future research in this area.


2020 ◽  
pp. 152808372092584
Author(s):  
Muhammad Awais Naeem ◽  
Qasim Siddiqui ◽  
Muhammad Rafique Khan ◽  
Muhammad Mushtaq ◽  
Muhammad Wasim ◽  
...  

In recent times, there is a growing demand for low-cost raw materials, renewable resources, and eco-friendly end products. Natural fibers are considered as strong candidates to be used as a potential reinforcement for composite manufacturing. In the current study, natural fibers extracted from banana peel were coated with bacterial cellulose through a green biosynthesis approach as well as by a simple slurry dipping method. Thus, natural fibers from banana peel waste were used the first time, to produce bacterial cellulose-natural fiber composites. SEM analysis revealed good interaction between the hybrid fibers and the epoxy matrix. Thermal gravimetric analysis results revealed that the degradation temperature increases because of the addition of bacterial cellulose on fiber surface, which improves the thermal stability. The maximum thermal decomposition temperature (405°C) was noticed for nanocomposites reinforced by banana fibers with bacterial cellulose deposited on their surface. Whereas the lowest weight loss was also found for the same sample group. The highest tensile strength (57.95 MPa) was found for SBC-BP/epoxy, followed by DBC-BP/epoxy (54.73 MPa) and NBP/epoxy (45.32 MPa) composites, respectively. Composites reinforced by both types of hybrid banana fibers shown comparatively higher tensile performance as compared with the neat banana peel fiber-epoxy composites, which can be attributed to the high strength and stiffness associated with the bacterial cellulose. Overall, this study suggests a successful and green route for the fabrication of natural fiber-reinforced composites with improved properties such as tensile strength and thermal stability.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Govindaraj Ramkumar ◽  
Satyajeet Sahoo ◽  
G. Anitha ◽  
S. Ramesh ◽  
P. Nirmala ◽  
...  

Over the past few years, natural fiber composites have been a strategy of rapid growth. The computational methods have become a significant tool for many researchers to design and analyze the mechanical properties of these composites. The mechanical properties such as rigidity, effects, bending, and tensile testing are carried out on natural fiber composites. The natural fiber composites were modeled by using some of the computation techniques. The developed convolutional neural network (CNN) is used to accurately predict the mechanical properties of these composites. The ground-truth information is used for the training process attained from the finite element analyses below the plane stress statement. After completion of the training process, the developed design is authorized using the invisible data through the training. The optimum microstructural model is identified by a developed model embedded with a genetic algorithm (GA) optimizer. The optimizer converges to conformations with highly enhanced properties. The GA optimizer is used to improve the mechanical properties to have the soft elements in the area adjacent to the tip of the crack.


2016 ◽  
Vol 37 (19) ◽  
pp. 1202-1216 ◽  
Author(s):  
Alejandra Constante ◽  
Selvum Pillay

The demand for natural fiber composites in the automotive industry in both Europe and the United States has been forecasted to increase in the coming years. The natural fiber composites based on highly commercialized fibers such as flax, hemp, and sisal has grown to become an important sector of polymeric composites. However, little attention has been addressed to expanding natural fiber composites to include new sources of emerging natural reinforcements, such as reclaimed algae fibers, that have a multiple environmental benefits. Not only are extracted algae fibers biodegradable, the reclamation process has the added benefit of restoring health of waterways choked with algae. This study focuses on the processability of algae fiber–epoxy composites. Short fibers, chemically extracted from raw reclaimed algae, were prepared for natural fiber composite products in two ways. First, randomly oriented mats were produced using the wet-laid process to create layered, compression-molded laminates. Second, loose fibers were dispersed directly into the thermoset matrix to produce a bulk molding compound that was further compression molded into composite lamina. The effect of processing variables such as compaction pressure, temperature, and time were addressed. Moreover, the effect of fiber volume fraction ( υf) and fiber form were considered. Enhanced mechanical properties were found when 56% υf algae fiber was used for the compression-molded laminates composite. This variant exhibited an improvement on the flexural and tensile modulus of 70% and 86% when compared to the neat epoxy. However, the volume of porosity on the same variant was 11% due to lack of compression in some of the fibers. The effect of porosity on the theoretical stiffness was estimated by using the Cox–Krenchel model. Furthermore, an empirical exponential model was formulated to characterize the multi-scale effect of compaction pressure on the overall fiber volume fraction, υf.


Sign in / Sign up

Export Citation Format

Share Document