Bacterial cellulose-natural fiber composites produced by fibers extracted from banana peel waste

2020 ◽  
pp. 152808372092584
Author(s):  
Muhammad Awais Naeem ◽  
Qasim Siddiqui ◽  
Muhammad Rafique Khan ◽  
Muhammad Mushtaq ◽  
Muhammad Wasim ◽  
...  

In recent times, there is a growing demand for low-cost raw materials, renewable resources, and eco-friendly end products. Natural fibers are considered as strong candidates to be used as a potential reinforcement for composite manufacturing. In the current study, natural fibers extracted from banana peel were coated with bacterial cellulose through a green biosynthesis approach as well as by a simple slurry dipping method. Thus, natural fibers from banana peel waste were used the first time, to produce bacterial cellulose-natural fiber composites. SEM analysis revealed good interaction between the hybrid fibers and the epoxy matrix. Thermal gravimetric analysis results revealed that the degradation temperature increases because of the addition of bacterial cellulose on fiber surface, which improves the thermal stability. The maximum thermal decomposition temperature (405°C) was noticed for nanocomposites reinforced by banana fibers with bacterial cellulose deposited on their surface. Whereas the lowest weight loss was also found for the same sample group. The highest tensile strength (57.95 MPa) was found for SBC-BP/epoxy, followed by DBC-BP/epoxy (54.73 MPa) and NBP/epoxy (45.32 MPa) composites, respectively. Composites reinforced by both types of hybrid banana fibers shown comparatively higher tensile performance as compared with the neat banana peel fiber-epoxy composites, which can be attributed to the high strength and stiffness associated with the bacterial cellulose. Overall, this study suggests a successful and green route for the fabrication of natural fiber-reinforced composites with improved properties such as tensile strength and thermal stability.

2014 ◽  
Vol 592-594 ◽  
pp. 1195-1199
Author(s):  
Ashwin Sailesh ◽  
C. Shanjeevi ◽  
J.Jeswin Arputhabalan

The developments in the field of composite materials are growing tremendously day by day. One such development is the use of natural fibers as reinforcement in the composite material. This is attributed to the fact that natural fibers are environmental friendly, economical, easily available and non-abrasive. Mixing of natural fiber with Glass Fibers is finding increased applications. In this present investigation Banana – Bamboo – Glass fiber reinforced natural fiber composites is fabricated by Hand – Layup technique with varying fiber orientation such as [0°G, 90°BM, 0°BN, 0°G], [0°G, 0°BM, +45°BN, 0°G] and [0°G, 0°BM, 90°BN, 0°G] and are tested for its tensile strength. The tensile strength of the fabricated composites is evaluated. The results indicated that the natural fiber composite with the fiber orientation of [0°G, 0°BM, 90°BN, 0°G] can withstand more load when compared to the samples with other fiber orientation. Nomenclature Used: BN – Banana fiber BM – Bamboo fiber G – Glass fiber


2017 ◽  
Vol 47 (8) ◽  
pp. 2050-2073 ◽  
Author(s):  
A Praveen Kumar ◽  
M Nalla Mohamed

Economic and environmental concerns lead the researchers toward development of sustainable and renewable materials of which reinforced composites are part of. The abundantly available natural fibers have attracted the researchers to study their performance as reinforcements and feasibility for making automobile components. The performance of composite materials is mainly assessed through their mechanical properties. However, natural fibers to date were mainly used as reinforcements to create bulk composite components with reduced cost rather than improved mechanical performances. Among the methods available for improving mechanical properties of the natural fiber composites, combined mercerization treatment, hybridization, and incorporation of fly ash fillers in the matrix are the best solutions. Therefore, the objective of this research is to evaluate the tensile properties of hybrid kenaf/glass composites with and without fly ash particulate filler as per ASTM standards. Moisture absorption behavior and its effect on the tensile properties of hybrid composites are also investigated. The results revealed that the addition of 10wt % fly ash particles with natural fiber composites increased the tensile strength of composites while hybridization with glass fibers reduced the water absorption properties.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2220
Author(s):  
Zaida Ortega ◽  
Francisco Romero ◽  
Rubén Paz ◽  
Luis Suárez ◽  
Antonio Nizardo Benítez ◽  
...  

This paper compares the mechanical properties of different natural fiber composites produced by rotational molding as a way of waste valorization from campaigns to control invasive plant species in Macaronesia. Rotomolded parts produced with polymeric matrices (polyethylene) and filled with up to 20% by weight of cellulosic fibers obtained from Arundo donax L., Pennisetum setaceum, and Ricinus communis plants were characterized in terms of tensile, flexural, and impact strength. It was found that the sieving of natural fibers allowed for their introduction in higher loadings, from 10 (for un-sieved material) to 20%; fiber size greatly affected the mechanical properties of the final parts, although some combinations were proven not to reduce the mechanical properties of the neat resin. This study is a first approach to the valorization of residues obtained from periodic campaigns of the control of invasive species performed by public authorities, usually at the local level. It is important to highlight that the main objective of this research did not focus on economically profitable activity; instead, it was focused on the reduction of wastes to be disposed from ecosystem maintenance actions and the investment of potential income into preservation policies.


2018 ◽  
Vol 1148 ◽  
pp. 61-71 ◽  
Author(s):  
V. Joshua Jaya Prasad ◽  
Puli Suresh Kumar

Recently, there has been an exponential growth in research and innovation in the natural fiber composites (NFC) due to their diversified applications in the field of engineering. Biodegradability, light weight, formability and availability at low cost are the attractive merits of the natural fibers. Mechanical, Thermal and Machinabilty properties of Natural fiber composites have their own advantage and adoptability in the field of automobile, power plants, aeronautical, defense and naval applications. This review aims to provide an overview of the comparison of differ types of Natural fiber composites, factors that affect the mechanical, thermal and machinabilty of NFCs and their engineering applications.


2016 ◽  
Vol 854 ◽  
pp. 59-64
Author(s):  
S. Syath Abuthakeer ◽  
Ramakrishnan Vasudaa ◽  
Afsana Nizamudeen

Today’s technological innovations call for continual improvement in the field of material science to substitute the heavy structures with lightweight materials without compromising the strength. For this purpose composite materials (combination of two or more materials) are developed. The incorporation of natural fibers as reinforcing agent in both thermoset and thermoplastic polymer composites has gained increasing applications both in many areas of engineering and technology. A variety of natural fibers based polymer composite materials have been developed using modified synthetic strategies to extend its application from automotive to biomedical fields. The eco friendliness and reduction in wear and tear aspects in machineries with the use of natural fiber composites also has been captured in this paper. This paper is an earnest compilation of the data regarding a variety of natural fibers, their physical and mechanical properties, their resilience and strength. Considerable effort has been put in bringing the data on various natural fiber composites in one place by cutting out the details from various sources so as to make it as a ready reckoner for any researcher for future research in this area.


2011 ◽  
Vol 415-417 ◽  
pp. 666-670 ◽  
Author(s):  
Na Lu ◽  
Shubhashini Oza ◽  
Ian Ferguson

Natural fiber reinforced composites are being used as reinforcement material in composite system due to their positive environmental benefits. Added to that, natural fibers offer advantages such as low density, low cost, good toughness, high specific strength, relatively non-abrasive and wide availability. However, the low thermal stability of natural fibers is one of the major challenges to increase their use as reinforcing component. In this study, a thorough investigation has been done to compare the effect of two chemical treatment methods on the thermal stability of hemp fibers. 5wt% sodium hydroxide and 5wt% triethoxyvinylsilane was used for the treatment of hemp fibers. Fourier transform infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis were used for characterization of untreated and treated fiber. The results indicated that 24 hours alkali treatment and 3 hours silane treatment time enhanced the thermal stability of the hemp fiber. However, alkali treatment shows better improvement compared to silane treatment.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
P. B. Mohankumara ◽  
Shraddha Prashant Thakare ◽  
Vijaykumar Guna ◽  
G. R. Arpitha

AbstractIn this work, the potential for using Millettia pinnata stalk for extracting cellulosic natural fibers and its subsequent use in reinforced composites was studied. The extracted fibers were characterized for its composition, mechanical, thermal stability and morphological properties. Compositional analysis showed that the fibers possessed 54% cellulose, 12% hemicellulose, 15% lignin and 11% ash. The tensile strength of the fiber was 310 MPa, which is comparable to cotton and linen. The tensile strength of the M. pinnata fiber-reinforced polypropylene composites was 17.96 MPa which was similar to other natural fiber-based composites. M. pinnata fibers appear promising for a wide range of applications including textiles and other typical composites applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hasina Mamtaz ◽  
Mohammad Hosseini Fouladi ◽  
Mushtak Al-Atabi ◽  
Satesh Narayana Namasivayam

The current study is a bibliographic observation on prevailing tendencies in the development of acoustic absorption by natural fiber composites. Despite having less detrimental environmental effects and thorough availability, natural fibers are still unsuitable for wide implementation in industrial purposes. Some shortcomings such as the presence of moisture contents, thicker diameter, and lower antifungus quality hold up the progress of natural fiber composites in staying competitive with synthetic composites. The review indicates the importance of the pretreatment of fresh natural fiber to overcome these shortcomings. However, the pretreatment of natural fiber causes the removal of moisture contents which results in the decrease of its acoustic absorption performance. Incorporation of granular materials in treated fiber composite is expected to play a significant role as a replacement for moisture contents. This review aims to investigate the acoustic absorption behavior of natural fiber composites due to the incorporation of granular materials. It is intended that this review will provide an overview of the analytical approaches for the modeling of acoustic wave propagation through the natural fiber composites. The possible influential factors of fibers and grains were described in this study for the enhancement of low frequency acoustic absorption of the composites.


2001 ◽  
Vol 702 ◽  
Author(s):  
Prabhu Kandachar ◽  
Rik Brouwer

ABSTRACTAvailable as agricultural resources in many countries, natural fibers, such as flax, hemp, kenaf, exhibit mechanical properties comparable to those of synthetic fibers like glass. But they are lighter, biodegradable, and are often claimed to be less expensive. Composites with these natural fibers have the potential to be attractive alternative to synthetic fiber composites. The natural fibers, however, exhibit more scatter in their properties, are thermally less stable and are sensitive to moisture absorption. The choice of matrix to reinforce with these fibers therefore becomes critical.Currently, synthetic non-biodegradable polymers, such as polypropylene, polyester, etc., are being explored as matrix materials, for applications in sectors like automobiles and buildings. Biodegradable polymers, if made available in sufficient quantities at affordable prices, pave way for bio-composites in future. With both matrix and fibers being biodegradable, bio-composites become attractive candidates from the environment point of view.Extensive and reliable property data on natural fiber composites and/or on bio-composites, are still lacking, making product design with these materials rather tedious. Once the database is available, design & manufacture of products with natural fiber composites and biocomposites offer several opportunities and challenges.


2018 ◽  
Vol 37 (11) ◽  
pp. 770-779 ◽  
Author(s):  
Tabrej Khan ◽  
Mohamed Thariq Bin Hameed Sultan ◽  
Ahmad Hamdan Ariffin

In this review, previous studies about the properties and applications of natural fiber composites in the aerospace and automobile fields will be discussed. Natural fiber composites are a better alternate to the existing artificial fiber composites due to their advantages, e.g. lightweight, cheaper and, most importantly, their environmental aspects and biodegradability. Since ancient times, natural fibers have been used for preparing walls, baskets, ropes, clothes, and many more products. More recently, natural fibers such as jute, kenaf, sisal, hemp, and flax have been used in the engineering production field. Natural fiber composites are used increasingly in the aerospace and automotive industries. Nowadays, natural fiber composites and artificial composites are being compared by researchers to find the most appropriate materials for engineering fields. Researchers are also more focused on natural fibers due to their biodegradability and low production cost. Assessments of the materials used in aircraft parts and panel structures have been made to study the potential of using natural fiber composites instead.


Sign in / Sign up

Export Citation Format

Share Document