scholarly journals Study of High Efficiency Flow Regulation of VIGV in Centrifugal Compressor

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Chunjun Ji ◽  
Qi Sun ◽  
Zhaoyang Fan ◽  
Yawei Gao ◽  
Baode Zhao

Variable inlet guide vane (VIGV) is used to control the mass flow and generate prewhirl in centrifugal compressors. Due to the tip clearance of the guide vanes and the defect of the traditional guide vane profiles, the mass flow regulation of VIGV is limited, resulting in a large waste of compressed gas. Two kinds of inlet flow channels were proposed to eliminate the influence of tip clearance. These structures were numerically investigated at different setting angles. The results show that the improved channels not only expand the range of mass flow regulation, but also reduce the power and increase the efficiency of the compressor. Ten kinds of guide vane profiles, including different thickness distribution, camber line profile, were selected to compare with the original one and with each other. In the premise of ensuring the performance of compressor, the best guide vane profile was selected. The results show that reducing the guide vane thickness, increasing the guide vane camber angle, and increasing the distance between the maximum camber position and the leading edge of guide vane can help expand the range of mass flow regulation. The achievement of this research can effectively improve the flow regulation ability of VIGV and the performance of compressor.

Author(s):  
Hengtao Shi ◽  
Lucheng Ji

Recently, a new type airfoil for variable inlet guide vane (VIGV), featuring “dual-peak” surface velocity pattern at high incidence, is proposed and shows wide low-loss operation range. To further improve its performance, this paper researches the influence of leading edge (LE) thickness and shape on the loss level and surface velocity features of the “dual-peak” type airfoil. Firstly, a polynomial-based continuous-curvature leading edge design method was briefly introduced and used in the LE redesign of sample airfoils. Then, steady simulations based on Reynolds-Averaged Navier-Stokes method (RANS), carried out by commercial software CFX after grid independent study, were used to determine the aerodynamic performance, surface velocity distribution and boundary-layer behaviors of all research airfoils. Simulation results indicate that there exists an optimized range of LE relative thickness that can achieve lower airfoil loss level at high incidence condition. For Case 1 ([Formula: see text]) and Case 2 ([Formula: see text]), the optimized LE relative thickness range is [Formula: see text] and [Formula: see text]. The LE shape optimization can further reduce the maximum incidence condition loss coefficient with proportion up to 18% for airfoils with optimal LE thickness. Analysis of flow mechanism indicates that the optimized LE thickness and shape can reduce the suction spike height and subsequent adverse pressure gradient, therefore, decrease the LE separation scale and result in a lower loss coefficient. As an application, a dual peak VIGV with circular LE, presented in previous paper as the optimized VIGV, is redesigned in the LE portion according to the research findings and achieved 0.6 percent improvement in passage-averaged total pressure recovery coefficient [Formula: see text] at extreme high stagger angle point and the low-loss operation range extends with about 5°, which confirms the effectiveness of the research findings in three-dimensional environment.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qi Sun ◽  
Chunjun Ji ◽  
Junyi Fang ◽  
Chunyang Li ◽  
Xiaolin Zhang

Variable inlet guide vane (IGV) is used to control the mass flow and generate prewhirl in centrifugal compressors. The efficient operation of IGV is limited to the range of aerodynamic characteristics of their vane profiles. In order to find out the best vane profile for IGV regulation, the modern optimization method was adopted to optimize the inlet guide vane profile. The main methodology idea was to use artificial neural network for continuous fitness evaluation and use genetic algorithm for global optimization. After optimization, the regulating performance of IGV has improved significantly, the prewhirl ability has been enhanced greatly, and the pressure loss has been reduced. The mass flow and power of compressor reduced by using the optimized guide vane at large setting angles, and the efficiency increased significantly; the flow field distribution has been improved obviously, since the nonuniform distribution of flow and flow separation phenomenon greatly weakened or even completely disappeared. The achievement of this research can effectively improve the regulation ability of IGV and the performance of compressor.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 172
Author(s):  
Hengtao Shi

Recently, a new type of low-loss variable inlet guide vane (VIGV) was proposed for improving a compressor’s performance under off-design conditions. To provide more information for applications, this work investigated the effect of the Reynolds number and clearance flow on the aerodynamic characteristics of this new type of VIGV. The performance and flow field of two representative airfoils with different chord Reynolds numbers were studied with the widely used commercial software ANSYS CFX after validation was completed. Calculations indicate that, with the decrease in the Reynolds number Rec, the airfoil loss coefficient ω and deviation δ first increase slightly and then entered a high growth rate in a low range of Rec. Afterwards, a detailed boundary-layer analysis was conducted to reveal the flow mechanism for the airfoil performance degradation with a low Reynolds number. For the design point, it is the appearance and extension of the separation region on the rear portion; for the maximum incidence point, it is the increase in the length and height of the separation region on the former portion. The three-dimensional VIGV research confirms the Reynolds number effect on airfoils. Furthermore, the clearance leakage flow forms a strong stream-wise vortex by injection into the mainflow, resulting in a high total-pressure loss and under-turning in the endwall region, which shows the potential benefits of seal treatment.


Author(s):  
Milan Banjac ◽  
Milan V. Petrovic ◽  
Alexander Wiedermann

This paper describes a new universal algebraic model for the estimation of flow deflection and losses in axial compressor inlet guide vane devices. The model deals with nominal flow and far-off-design operating conditions in connection with large stagger angle adjustments. The first part of the model considers deflection and losses in 2D cascades, taking into account the main cascade geometry parameters and operating conditions, such as Mach number and stagger adjustment. The second part of the model deals with additional deviation and losses due to secondary flow caused by the endwall viscous effects and by the trailing vortices. The model is developed for NACA65 airfoils, NACA63-A4K6 airfoils and airfoils having an NACA65 thickness distribution on a circular-arc camber line. It is suitable for application in 1D or 2D through-flow calculations for design and analysis cases. The development of the method is based on systematic CFD flow calculations for various cascade geometries and operating parameters. The comparison of correlation results with experimental data for several test cases shows good agreement.


2021 ◽  
Author(s):  
Stephanie Waters

This report's objective is to reduce the total pressure loss coefficient of an inlet guide vane (IGV) at high stagger angles and to therefore reduce the overall fuel consumption of an aircraft engine. IGVs are usually optimized for cruise where the stagger angle is approximately 0 degrees. To reduce losses, four different methodologies were tested: increasing the leading edge radius, increasing the camber, creating a "drooped nose", and creating an "S" curvature distribution. A baseline IGV was chosen and modified using these methodologies to create 10 new IGV designs. CFX was used to perform a CFD analysis on all 11 IGV designs at 5 stagger angles from 0 to 60 degrees. Typical missions were analyzed and it was discovered that the new designs decreased the fuel consumption of the engine. The IGV with the "S" curvature and thicker leading edge was the best and decreased the fuel consumption by 0.24%.


Author(s):  
Ashlie B. Flegel

Abstract A Honeywell Uncertified Research Engine was exposed to various ice crystal conditions in the NASA Glenn Propulsion Systems Laboratory. Simulations using NASA’s 1D Icing Risk Analysis tool were used to determine potential inlet conditions that could lead to ice crystal accretion along the inlet of the core flowpath and into the high pressure compressor. These conditions were simulated in the facility to develop baseline conditions. Parameters were then varied to move or change accretion characteristics. Data were acquired at altitudes varying from 5 kft to 45 kft, at nominal ice particle Median Volumetric Diameters from 20 μm to 100 μm, and total water contents of 1 g/m3 to 12 g/m3. Engine and flight parameters such as fan speed, Mach number, and inlet temperature were also varied. The engine was instrumented with total temperature and pressure probes. Static pressure taps were installed at the leading edge of the fan stator, front frame hub, the shroud of the inlet guide vane, and first two rotors. Metal temperatures were acquired for the inlet guide vane and vane stators 1–2. In-situ measurements of the particle size distribution were acquired three meters upstream of the engine forward fan flange and one meter downstream of the fan in the bypass in order to study particle break-up behavior. Cameras were installed in the engine to capture ice accretions at the leading edge of the fan stator, splitter lip, and inlet guide vane. Additional measurements acquired but not discussed in this paper include: high speed pressure transducers installed at the trailing edge of the first stage rotor and light extinction probes used to acquire particle concentrations at the fan exit stator plane and at the inlet to the core and bypass. The goal of this study was to understand the key parameters of accretion, acquire particle break-up data aft of the fan, and generate a unique icing dataset for model and tool development. The work described in this paper focuses on the effect of particle break-up. It was found that there was significant particle break-up downstream of the fan in the bypass, especially with larger initial particle sizes. The metal temperatures on the inlet guide vanes and stators show a temperature increase with increasing particle size. Accretion behavior observed was very similar at the fan stator and splitter lip across all test cases. However at the inlet guide vanes, the accretion decreased with increasing particle size.


2021 ◽  
Author(s):  
Stefan D. Cich ◽  
J. Jeffrey Moore ◽  
Chris Kulhanek ◽  
Meera Day Towler ◽  
Jason Mortzheim

Abstract An enabling technology for a successful deployment of the sCO2 close-loop recompression Brayton cycle is the development of a compressor that can maintain high efficiency for a wide range of inlet conditions due to large variation in properties of CO2 operating near its dome. One solution is to develop an internal actuated variable Inlet Guide Vane (IGV) system that can maintain high efficiency in the main and re-compressor with varying inlet temperature. A compressor for this system has recently been manufactured and tested at various operating conditions to determine its compression efficiency. This compressor was developed with funding from the US DOE Apollo program and industry partners. This paper will focus on the design and testing of the main compressor operating near the CO2 dome. It will look at design challenges that went into some of the decisions for rotor and case construction and how that can affect the mechanical and aerodynamic performance of the compressor. This paper will also go into results from testing at the various operating conditions and how the change in density of CO2 affected rotordynamics and overall performance of the machine. Results will be compared to expected performance and how design changes were implanted to properly counter challenges during testing.


Author(s):  
Kamal Abudu ◽  
Uyioghosa Igie ◽  
Orlando Minervino ◽  
Richard Hamilton

With the transition to more use of renewable forms of energy in Europe, grid instability that is linked to the intermittency in power generation is a concern, and thus, the fast response of on-demand power systems like gas turbines has become more important. This study focuses on the injection of compressed air to facilitate the improvement in the ramp-up rate of a heavy-duty gas turbine. The steady-state analysis of compressed airflow injection at part-load and full load indicates power augmentation of up to 25%, without infringing on the surge margin. The surge margin is also seen to be more limiting at part-load with maximum closing of the variable inlet guide vane than at high load with a maximum opening. Nevertheless, the percentage increase in the thermal efficiency of the former is slightly greater for the same amount of airflow injection. Part-load operations above 75% of power show higher thermal efficiencies with airflow injection when compared with other load variation approaches. The quasi-dynamic simulations performed using constant mass flow method show that the heavy-duty gas turbine ramp-up rate can be improved by 10% on average, for every 2% of compressor outlet airflow injected during ramp-up irrespective of the starting load. It also shows that the limitation of the ramp-up rate improvement is dominated by the rear stages and at lower variable inlet guide vane openings. The turbine entry temperature is found to be another restrictive factor at a high injection rate of up to 10%. However, the 2% injection rate is shown to be the safest, also offering considerable performance enhancements. It was also found that the ramp-up rate with air injection from the minimum environmental load to full load amounted to lower total fuel consumption than the design case.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


2013 ◽  
Vol 136 (4) ◽  
Author(s):  
William Riéra ◽  
Lionel Castillon ◽  
Julien Marty ◽  
Francis Leboeuf

In the present study, the influence of the inlet condition on the tip clearance flow of an axial compressor is investigated. Two different zonal detached eddy simulations (ZDES) computations are carried out and compared to Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) computations as well as to experimental data. A rotating distortion map of the flow cartography is set as inlet condition for the first ZDES computation. An azimuthally averaged inlet condition is used for the second one and uncouples the rotor tip-leakage vortex flutter phenomenon, which stems from the arrival of the inlet guide vane wake from the behavior inherent to the rotor tip-leakage vortex. In the studied configuration, the inlet guide vane tip vortex reveals to lower the effects from double leakage on the rotor. The topology of the rotor tip-leakage vortex is described, and its development is analyzed.


Sign in / Sign up

Export Citation Format

Share Document