scholarly journals Antioxidant Potential ofSpirulina platensisMitigates Oxidative Stress and Reprotoxicity Induced by Sodium Arsenite in Male Rats

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Samir A. E. Bashandy ◽  
Sally A. El Awdan ◽  
Hossam Ebaid ◽  
Ibrahim M. Alhazza

The present study aimed to examine the protective role ofSpirulina platensis(S. platensis) against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2at a dose of 6.3 mg/kg body weight for 8 weeks) caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD), catalase (CAT), reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH), triiodothyronine (T3), and thyroxine (T4) levels and reduced sperm motility and sperm count. Arsenic (AS) led to a significant increase in testicular malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), nitric oxide (NO), and sperm abnormalities.S. platensisat a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity.S. platensismay represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Samir A. E. Bashandy ◽  
Hossam Ebaid ◽  
Jameel Al-Tamimi ◽  
Omar A.-H. Ahmed-Farid ◽  
Enayat A. Omara ◽  
...  

Melatonin (ML) is a potent antioxidant that reduces oxidative stress. This study was designed to examine the protective effect of melatonin on potassium dichromate- (PDC-) induced male reproductive toxicity. Forty rats were divided into five groups: the control group, rats administered PDC orally (10 mg/kg body weight) for eight weeks, rats administered ML intraperitoneally at doses of either 2.5 or 5 mg/kg followed by the administration of PDC, and rats administered 5 mg/kg ML only. The treatment of rats with PDC led to a decrease in the levels of plasma sex hormones, glutathione, superoxide dismutase, catalase, carnitine, sperm count, and motility. Testicular malondialdehyde levels, nitric oxide concentrations, and abnormalities increased significantly in the PDC group. Melatonin administration to the PDC-treated rats reduced the increase of malondialdehyde and restored the activity of antioxidant enzymes (superoxide dismutase and catalase), glutathione, and sex hormone levels. Moreover, ML attenuated PDC-induced increase in levels of tumor necrosis factor-alpha or interleukin-6. ML alleviated histopathological changes and an increase of p53-positive immune reaction due to PDC. Furthermore, ML inhibited PDC-induced decrease in the DNA content of spermatogenic cells. This study proposed that melatonin may be useful in mitigating oxidative stress-induced testicular damage due to potassium dichromate toxicity.


2020 ◽  
pp. 096032712095000
Author(s):  
Muhammad Umar Ijaz ◽  
Arfa Tahir ◽  
Abdul Samad ◽  
Haseeb Anwar

Nonylphenol (NP) is an environmental contaminant, which adversely affects the male fertility due to endocrine disruption and generation of oxidative stress. The current research was planned to assess the effects of nobiletin (NOB), a polymethoxyflavone, on NP-induced testicular damages. Twenty-four male rats were divided into 4 groups: control (0.1% DMSO), NP group (50 mg/kg), NP+NOB group (50 mg/kg + 25 mg/kg), and NOB group (25 mg/kg). Our results revealed that NP brought down the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GSR), while elevated the level of thiobarbituric acid reactive substances (TBARS). Additionally, NP decreased the level of follicle-stimulating hormone (FSH), luteinizing hormone (LH), plasma testosterone, daily sperm production (DSP), epididymal sperm count, viability, motility, gene expression of testicular steroidogenic enzymes (StAR, 3β-HSD and 17β-HSD) and anti-apoptotic protein (Bcl-2), as well as number of spermatogenic cells belonging to various stages. Whereas, sperm (head, mid-piece/neck and tail) abnormalities, expression of apoptotic proteins (Bax and caspase-3), and histopathological damages were increased. However, NOB remarkably reversed all the damages caused by NP. Therefore, it is deduced that NOB could be used as a potential therapeutic to counter the NP-prompted oxidative stress and apoptotic damages in testes.


2018 ◽  
Vol 52 (4) ◽  
pp. 192-198 ◽  
Author(s):  
Mervat Z. Mohamed ◽  
Heba M. Hafez ◽  
Hanaa H. Mohamed ◽  
Nagwa M. Zenhom

AbstractObjective. We aimed to assess the protective role of verapamil, L-type calcium channel blockers, against early lung damage in diabetic rats. Lung injury has recently been recognized as a consequent complication of diabetes mellitus. Hyperglycemia induces inflammatory changes in lung tissue early in the disease. Methods. Twenty four adult male rats were grouped into control, diabetic, diabetic treated with verapamil, and verapamil control. Streptozotocin (STZ) was used to induce diabetes. Oxidative parameters and antioxidative mechanisms were assessed in lung homogenate. Tumor necrosis factor alpha (TNFα) protein was measured as a pro-inflammatory mediator. Signal transducer and activator of transcription 3 (STAT3) gene expression and nuclear erythroid factor 2 (Nrf2) immunoexpression were screened. Results. The lung showed oxidative damage and inflammatory infiltration in STZ diabetic rats early at 2 weeks. The parameters significantly improved in lung tissue treated with verapamil. Histopathology of the lung tissue confirmed the results. Inhibition of STAT3/TNFα pathway was involved in the protection offered by verapamil. Activation of Nrf2 together with an increasing antioxidant capacity of diabetic lung significantly ameliorates the injury induced by diabetes. Conclusions. Verapamil afforded protection in diabetic lung injury. The protection was mediated by the anti-inflammatory and antioxidant effects of verapamil.


2021 ◽  
Vol 22 (6) ◽  
pp. 2867
Author(s):  
Ana Ilic ◽  
Dusan Todorovic ◽  
Slavica Mutavdzin ◽  
Novica Boricic ◽  
Biljana Bozic Nedeljkovic ◽  
...  

The possible cardioprotective effects of translocator protein (TSPO) modulation with its ligand 4′-Chlorodiazepam (4′-ClDzp) in isoprenaline (ISO)-induced rat myocardial infarction (MI) were evaluated, alone or in the presence of L-NAME. Wistar albino male rats (b.w. 200–250 g, age 6–8 weeks) were divided into 4 groups (10 per group, total number N = 40), and certain substances were applied: 1. ISO 85 mg/kg b.w. (twice), 2. ISO 85 mg/kg b.w. (twice) + L-NAME 50 mg/kg b.w., 3. ISO 85 mg/kg b.w. (twice) + 4′-ClDzp 0.5 mg/kg b.w., 4. ISO 85 mg/kg b.w. (twice) + 4′-ClDzp 0.5 mg/kg b.w. + L-NAME 50 mg/kg b.w. Blood and cardiac tissue were sampled for myocardial injury and other biochemical markers, cardiac oxidative stress, and for histopathological evaluation. The reduction of serum levels of high-sensitive cardiac troponin T hs cTnT and tumor necrosis factor alpha (TNF-α), then significantly decreased levels of serum homocysteine Hcy, urea, and creatinine, and decreased levels of myocardial injury enzymes activities superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as lower grades of cardiac ischemic changes were demonstrated in ISO-induced MI treated with 4′-ClDzp. It has been detected that co-treatment with 4′-ClDzp + L-NAME changed the number of registered parameters in comparison to 4′-ClDzp group, indicating that NO (nitric oxide) should be important in the effects of 4′-ClDzp.


2021 ◽  
pp. 153537022199520
Author(s):  
Nanees F El-Malkey ◽  
Amira E Alsemeh ◽  
Wesam MR Ashour ◽  
Nancy H Hassan ◽  
Husam M Edrees

Intestinal tissue is highly susceptible to ischemia/reperfusion injury in many hazardous health conditions. The anti-inflammatory and antioxidant glycoprotein fetuin-A showed efficacy in cerebral ischemic injury; however, its protective role against intestinal ischemia/reperfusion remains elusive. Therefore, this study investigated the protective role of fetuin-A supplementation against intestinal structural changes and dysfunction in a rat model of intestinal ischemia/reperfusion. We equally divided 72 male rats into control, sham, ischemia/reperfusion, and fetuin-A-pretreated ischemia/reperfusion (100 mg/kg/day fetuin-A intraperitoneally for three days prior to surgery and a third dose 1 h prior to the experiment) groups. After 2 h of reperfusion, the jejunum was dissected and examined for spontaneous contractility. A jejunal homogenate was used to assess inflammatory and oxidative stress enzymes. Staining of histological sections was carried out with hematoxylin, eosin and Masson’s trichrome stain for evaluation. Immunohistochemistry was performed to detect autophagy proteins beclin-1, LC3, and p62. This study found that fetuin-A significantly improved ischemia/reperfusion-induced mucosal injury by reducing the percentage of areas of collagen deposition, increasing the amplitude of spontaneous contraction, decreasing inflammation and oxidative stress, and upregulating p62 expression, which was accompanied by beclin-1 and LC3 downregulation. Our findings suggest that fetuin-A treatment can prevent ischemia/reperfusion-induced jejunal structural and functional changes by increasing antioxidant activity and regulating autophagy disturbances observed in the ischemia/reperfusion rat model. Furthermore, fetuin-A may provide a protective influence against intestinal ischemia/reperfusion complications.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Ayed A. Shati ◽  
Mohamed Samir A. Zaki ◽  
Youssef A. Alqahtani ◽  
Mohamed A. Haidara ◽  
Mubarak Al-Shraim ◽  
...  

Insecticides and toxicants abound in nature, posing a health risk to humans. Concurrent exposure to many environmental contaminants has been demonstrated to harm myocardial performance and reduce cardiac oxidative stress. The purpose of this research was to study the protective effect of vitamin C (Vit C) on quinalphos (QP)-induced cardiac tissue damage in rats. Eighteen albino male rats were randomly categorised into three groups (n = 6). Control, QP group: rats received distilled water. QP insecticide treatment: an oral administration of QP incorporated in drinking water. QP + Vit C group: rats received QP and Vit C. All the experiments were conducted for ten days. Decline of cardiac antioxidant biomarkers catalase (CAT) and reduced glutathione (GPx) along with increased proinflammatory markers tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) indicated oxidative and inflammatory damage to the heart following administration of QP when compared to control rats. The light microscopic and ultrastructure appearance of QP-treated cardiomyocytes exhibited cardiac damage. Administration of Vit C showed decreased oxidative and inflammatory biomarkers, confirmed with histological and electron microscopic examination. In conclusion, Vit C protected the heart from QP-induced cardiac damage due to decreased inflammation and oxidative stress.


2021 ◽  
Vol 7 (5) ◽  
pp. 1131-1137
Author(s):  
Hui Wang ◽  
Lulu Wang ◽  
Tian Chao ◽  
Zhonghui Kang

Periodontitis is a chronic oral inflammatory disease that is difficult to treat and is therefore the subject of clinical research seeking new and effective treatment. Nano-silver has antibacterial and anti-inflammatory effects; however, its application in periodontitis is not well studied. In this study, we show decreases in periodontitis-associated inflammatory cytokines interleukin IL-4, IL-6, IL-8, IL-10, and tumor necrosis factor alpha (TNF-a) (P < 0.05) and in oxidative stress (P < 0.05) under intervention with nano-silver solution. The protein expression of CCL21, heat-shock protein 90 (HSP90), andE-selectin in periodontal tissues decreased (P < 0.05), while bone structure improved (P < 0.05). This work suggests that nano-silver solution can effectively inhibit the inflammatory response and oxidative stress response of periodontitis and improve the periodontal tissue and tooth structure to some extent; it may provide a new periodontitis treatment in the future.


2018 ◽  
Vol 34 (11) ◽  
pp. 798-811 ◽  
Author(s):  
Mohaddeseh Mohammadi-Sardoo ◽  
Ali Mandegary ◽  
Mohammad Nabiuni ◽  
Seyed-Noureddin Nematollahi-Mahani ◽  
Bagher Amirheidari

Mancozeb (MZB) is one of the fungicides used in pest control programs that might affect human health including reproductive system. The aim of this study was to demonstrate the mechanisms through which MZB induces testicular tissue damage and the probable protective effect of N-acetylcysteine (NAC), a modified amino acid, with antioxidant property, against MZB toxicity in an animal model. Male albino mice ( n = 8) were exposed to different doses of MZB (250 and 500 mg/kg/day) by oral gavage without or with NAC (200 mg/kg, twice/week) for 40 days. Sub-chronic MZB dose-dependently decreased sperm motility and count. Exposure to MZB increased lipid peroxidation and protein carbonyl, while it reduced antioxidant enzymes activities, total antioxidant capacity, and glutathione content. The histopathological examination clearly showed deleterious changes in the testicular structure. At the molecular levels, the results of quantitative real time-poly chain reaction (qRT-PCR) showed that MZB upregulated oxidative stress markers inducible nitric oxide synthase (iNOS) and NADPH oxidase 4 (NOX4) and downregulated expression of the glutathione peroxidase 1 (Gpx1) gene as one of the most important antioxidant enzymes. MZB also induced apoptosis dose-dependently in the testes as determined by the terminal dUTP nick-end labeling assay and immunoblotting. NAC administration decreased the mRNA levels of both iNOS and NOX4 with a concomitant increase in Gpx1 expression. It also significantly decreased MZB-induced oxidative stress and apoptosis. Collectively, the present study showed MZB-induced oxidative damage in testes leading to apoptosis. It revealed that antioxidants such as NAC can mitigate oxidant injury induced by the dithiocarbamate pesticides in the reproductive system.


Sign in / Sign up

Export Citation Format

Share Document