scholarly journals Potential Protective Effect of Vitamin C on Qunalphos-Induced Cardiac Toxicity: Histological and Tissue Biomarker Assay

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Ayed A. Shati ◽  
Mohamed Samir A. Zaki ◽  
Youssef A. Alqahtani ◽  
Mohamed A. Haidara ◽  
Mubarak Al-Shraim ◽  
...  

Insecticides and toxicants abound in nature, posing a health risk to humans. Concurrent exposure to many environmental contaminants has been demonstrated to harm myocardial performance and reduce cardiac oxidative stress. The purpose of this research was to study the protective effect of vitamin C (Vit C) on quinalphos (QP)-induced cardiac tissue damage in rats. Eighteen albino male rats were randomly categorised into three groups (n = 6). Control, QP group: rats received distilled water. QP insecticide treatment: an oral administration of QP incorporated in drinking water. QP + Vit C group: rats received QP and Vit C. All the experiments were conducted for ten days. Decline of cardiac antioxidant biomarkers catalase (CAT) and reduced glutathione (GPx) along with increased proinflammatory markers tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) indicated oxidative and inflammatory damage to the heart following administration of QP when compared to control rats. The light microscopic and ultrastructure appearance of QP-treated cardiomyocytes exhibited cardiac damage. Administration of Vit C showed decreased oxidative and inflammatory biomarkers, confirmed with histological and electron microscopic examination. In conclusion, Vit C protected the heart from QP-induced cardiac damage due to decreased inflammation and oxidative stress.

2021 ◽  
Author(s):  
Mohammad Sheibani ◽  
Hedyeh Faghir-Ghanesefat ◽  
Yaser Azizi ◽  
Tahmineh Mokhtari ◽  
Hasan Yousefi‐Manesh ◽  
...  

The clinical use of doxorubicin as a potent chemotherapeutic agent is limited due to its dose-dependent cardiotoxicity. Oxidative stress and inflammatory pathways have a pivotal role in doxorubicin-induced cardiotoxicity. Sumatriptan, a 5-hydroxytryptamine (5-HT)1B/1D agonist that is mainly used to relieve migraine pain, has suggested exerting protective effects in numerous pathological conditions through antiinflammatory properties. The aim of the present study was to investigate the effects of sumatriptan on doxorubicin-induced cardiotoxicity and the contribution of anti-inflammation and antioxidative responses. Cardiotoxicity was induced by the administration of doxorubicin three times a week (2.5 mg/kg i.p) for two consecutive weeks on male rats. The animals were divided into four groups, including Control, Sumatriptan (0.1 mg/kg) received group, doxorubicin received group, and Doxorubicin+Sumatriptan (0.1 mg/kg) received group. Sumatriptan was administered 30 min before every injection of doxorubicin. On the last day of the second week, the body weight, mortality rate, electrocardiogram (ECG) and histopathological changes, cardiac inotropic study, and biochemical factors were evaluated. The loss of body weight, mortality rate, ECG parameters, reduction of papillary muscle contractility force as well as histopathological scores following administration of doxorubicin indicated severe cardiac damage. However, treatment with sumatriptan inhibited the functional and structural impairment induced by doxorubicin. In addition, sumatriptan could significantly reduce cardiac tissue levels of malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α), which were increased in the doxorubicin-treated rats. This study illustrated the protective effects of sumatriptan on decreasing doxorubicin-induced cardiac toxicity and mortality rate in part through inhibition of inflammatory and oxidative stress pathways.


2019 ◽  
Vol 30 (2) ◽  
pp. 219-232 ◽  
Author(s):  
Reham Z. Hamza ◽  
Rasha A. Al-Eisa ◽  
Amir E. Mehana ◽  
Nahla S. El-Shenawy

Abstract Background Aspartame (ASP) is used for treatment of obesity and diabetes mellitus. This study was designed to illustrate the biochemical responses and histopathological alterations besides the genotoxicity of ASP alone or with l-carnitine (LC) in the liver of rats. Methods Animals were separated into six groups: control, lower dose of ASP (ASP-LD; 75 mg/kg), higher dose of ASP (ASP-HD; 150 mg/kg), l-carnitine (LC; 10 mg/kg), ASP-LD plus LC, and ASP-HD plus LC. Treatment was carried out orally for 30 consecutive days. Results ASP raised the activity of some enzymes of liver markers and disturbed the lipid profile levels. The hepatic reduced glutathione (GSH) levels, the marker enzymes of antioxidant activities, were obviously diminished, and, possibly, the lipid peroxidation, C-reactive protein, and interleukins levels were increased. ASP significantly increased the DNA deterioration in comparison with the control in a dose-dependent manner. LC prevented ASP-induced liver damage as demonstrated by the enhancement of all the above parameters. Results of histopathological and electron microscopic examination proved the biochemical feedback and the improved LC effect on liver toxicity. Conclusions The co-treatment of LC showed different improvement mechanisms against ASP-induced liver impairment. So, the intake of ASP should be regulated and taken with LC when it is consumed in different foods or drinks to decrease its oxidative stress, histopathology, and genotoxicity of liver.


2021 ◽  
Vol 22 (6) ◽  
pp. 2867
Author(s):  
Ana Ilic ◽  
Dusan Todorovic ◽  
Slavica Mutavdzin ◽  
Novica Boricic ◽  
Biljana Bozic Nedeljkovic ◽  
...  

The possible cardioprotective effects of translocator protein (TSPO) modulation with its ligand 4′-Chlorodiazepam (4′-ClDzp) in isoprenaline (ISO)-induced rat myocardial infarction (MI) were evaluated, alone or in the presence of L-NAME. Wistar albino male rats (b.w. 200–250 g, age 6–8 weeks) were divided into 4 groups (10 per group, total number N = 40), and certain substances were applied: 1. ISO 85 mg/kg b.w. (twice), 2. ISO 85 mg/kg b.w. (twice) + L-NAME 50 mg/kg b.w., 3. ISO 85 mg/kg b.w. (twice) + 4′-ClDzp 0.5 mg/kg b.w., 4. ISO 85 mg/kg b.w. (twice) + 4′-ClDzp 0.5 mg/kg b.w. + L-NAME 50 mg/kg b.w. Blood and cardiac tissue were sampled for myocardial injury and other biochemical markers, cardiac oxidative stress, and for histopathological evaluation. The reduction of serum levels of high-sensitive cardiac troponin T hs cTnT and tumor necrosis factor alpha (TNF-α), then significantly decreased levels of serum homocysteine Hcy, urea, and creatinine, and decreased levels of myocardial injury enzymes activities superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as lower grades of cardiac ischemic changes were demonstrated in ISO-induced MI treated with 4′-ClDzp. It has been detected that co-treatment with 4′-ClDzp + L-NAME changed the number of registered parameters in comparison to 4′-ClDzp group, indicating that NO (nitric oxide) should be important in the effects of 4′-ClDzp.


Author(s):  
D.R. Mattie ◽  
C.J. Hixson

Dimethylmethylphosphonate (DMMP) is a simple organophosphate used industrially as a flame retardant and to lower viscosity in polyester and epoxy resins. The military considered the use of DMMP as a nerve gas simulant. Since military use of DMMP involved exposure by inhalation, there was a need for a subchronic inhalation exposure to DMMP to fully investigate its toxic potential.Male Fischer-344 rats were exposed to 25 ppm or 250 ppm DMMP vapor on a continuous basis for 90 days. An equal number of control rats were sham-exposed. Following the 90-day continuous exposure period, 15 male rats were sacrificed from each group. Two rats from each group had the left kidney perfused for electron microscopic examination. The kidneys were perfused from a height of 150 cm water with 1% glutaraldehyde in Sorensen's 0.1M phosphate buffer pH 7.2. An additional kidney was taken from a rat in each group and fixed by immersion in 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1M cacodylate buffer pH 7.4. A portion of the 9 kidneys collected for electron microscopy were processed into Epon 812. Thin sections, stained with uranyl acetate and lead citrate, were examined with a JEOL 100B Transmission Electron Microscope. Microvilli height was measured on photographs of the cells of proximal tubules. This data, along with morphologic features of the cells, allows the proximal convoluted tubules (PCT) to be identified as being S1, S2, or S3 segment PCT.


2020 ◽  
Vol 55 (9) ◽  
pp. 1103-1114
Author(s):  
Pei‐Pei Zhang ◽  
Jing‐Jing Wang ◽  
Chong‐Yang Li ◽  
Hai‐sheng Hao ◽  
Hao‐Yu Wang ◽  
...  

2003 ◽  
Vol 285 (2) ◽  
pp. H499-H506 ◽  
Author(s):  
Stéphanie Héon ◽  
Martin Bernier ◽  
Nicolas Servant ◽  
Stevan Dostanic ◽  
Chunlei Wang ◽  
...  

Doxorubicin (DOX), an anticancer drug, causes a dose-dependent cardiotoxicity. Some evidence suggests that female children have an increased risk for DOX-mediated cardiac damage. To determine whether the iron chelator dexrazoxane (DXR) could reduce DOX-induced cardiotoxicity in the young, we injected day 10 neonate female and male rat pups with a single dose of saline or DOX, DXR, or DXR + DOX (20:1). We followed body weight gain with growth, measured cardiac hypertrophy after a 2-wk swim exercise program, markers of apoptosis (Bcl-2, BAX, BNIP1, caspase 3 activation), oxidative stress (heme oxygenase 1, protein carbonyl levels), the chaperone protein clusterin, and the transcriptional activator early growth response gene-1 (Egr-1) in hearts of nonexercised and exercised rats on neonate day 38. All DOX-alone and DXR + DOX-treated rats showed decreased weight gain, with female rats affected earlier than male rats. DXR-alone, DOX-alone, and DXR + DOX-treated rats had an increased heart weight-to-body weight (heart wt/body wt) ratio after the exercise program with female rats showing the largest increase in heart wt/body wt. Drug-treated females also showed increased cardiac apoptosis, as measured by the increased expression of the proapoptotic proteins BAX and BNIP1 and the appearance of caspase 3 activation products, and oxidative stress, as measured by increased heme oxygenase 1 expression, and reduced Egr-1 and clusterin expression when compared with the similarly treated male rats. We conclude that DXR preinjection did not reduce DOX-induced noncardiac and cardiac damage and that young female rats were more susceptible to DXR and DOX toxicities than age-matched male rats.


2020 ◽  
pp. 096032712094577
Author(s):  
MS Refat ◽  
RZ Hamza ◽  
AMA Adam ◽  
HA Saad ◽  
AA Gobouri ◽  
...  

To assess the chondroprotective effect and influence of N, N′-bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-oxopyrazol-4-yl) sebacamide (dpdo) that was synthesized through the reaction of phenazone with sebacoyl chloride and screened for its biological activity especially as anti-arthritic and anti-inflammatory agent in a monoiodoacetate (MA)-induced experimental osteoarthritis (OA) model. Thirty male albino rats weighing “190–200 g” were divided randomly into three groups (10 each): control, MA-induced OA, and MA-induced OA + dpdo. In MA-induced OA rat, the tumor necrosis factor alpha, interleukin 6, C-reactive protein, rheumatoid factors, reactive oxygen species, as well as all the mitochondrial markers such as mitochondria membrane potential, swelling mitochondria, cytochrome c oxidase (complex IV), and serum oxidative/antioxidant status (malondialdehyde level and activities of myeloperoxidase and xanthine oxidase) are elevated. Also, the activity of succinate dehydrogenase (complex II), levels of ATP, the level of glutathione (GSH), and thiol were markedly diminished in the MA-induced OA group compared to the normal control rats. These findings showed that mitochondrial function is associated with OA pathophysiological alterations and high gene expressions of (IL-6, TNF-a, and IL-1b) and suggests a promising use of dpdo as potential ameliorative agents in the animal model of OA and could act as anti-inflammatory agent in case of severe infection with COVID-19. It is clearly appeared in improving the bone cortex and bone marrow in the treated group with the novel compound in histological and transmission electron microscopic sections which is a very important issue today in fighting severe infections that have significant effects on the blood indices and declining of blood corpuscles like COVID-19, in addition to declining the genotoxicity and inflammation induced by MA in male rats. The novel synthesized compound was highly effective in improving all the above mentioned parameters.


2018 ◽  
Vol 30 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Abolfazl Khajavi Rad ◽  
Reza Mohebbati

Abstract Background Because of the antioxidant effects of Zataria multiflora (ZM) and carvacrol (CAR) and also the role of oxidative stress in the induction of cardiotoxicity induced by Adriamycin (ADR), the aim of this study was to investigate the improvement effects of ZM extract and CAR on cardiotoxicity induced by ADR in rats. Methods Twenty-eight male rats were randomly assigned to four groups including (1) the control group; (2) the ADR group, which received ADR intravenously at the beginning of the study and the (3) ZM+ADR and (4) CAR+ADR groups, which received ZM and CAR by gavage for 28 consecutive days and ADR as single dose. Blood samples were collected on days 0 and 28 to determine serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT) and lactate dehydrogenase (LDH). Also, cardiac tissue was removed for redox marker evaluation. Results In the ADR group, malondialdehyde (MDA) significantly increased and superoxide dismutase (SOD) activity and total thiol contents significantly reduced, as compared with the control group, while CAR administration significantly improved this condition. Treatment with ZM significantly increased the SOD activity and total thiol content, as compared with the ADR group. The level of LDH significantly increased on day 28 in the ADR group compared to the control group, and administration of ZM and CAR significantly decreased it. The SGPT and SGOT levels in the ADR group significantly increased, and CAR administration significantly reduced them. Conclusion The results indicate that the administration of ZM hydroalcoholic extracts and its active ingredient, CAR, could reduce the oxidative stress damage through promotion of the cardiac and systemic antioxidant system. Also, CAR administration demonstrated better improvement in cardiotoxicity with ADR in rats.


Sign in / Sign up

Export Citation Format

Share Document