scholarly journals The Influence of Methylsulfonylmethane on Inflammation-Associated Cytokine Release before and following Strenuous Exercise

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mariè van der Merwe ◽  
Richard J. Bloomer

Background. Inflammation is associated with strenuous exercise and methylsulfonylmethane (MSM) has been shown to have anti-inflammatory properties.Methods. Physically active men were supplemented with either placebo or MSM (3 grams per day) for 28 days before performing 100 repetitions of eccentric knee extension exercise.Ex vivoandin vitrotesting consisted of evaluating cytokine production in blood (whole blood and isolated peripheral blood mononuclear cells (PBMCs)) exposed to lipopolysaccharide (LPS), before and through 72 hours after exercise, whilein vivotesting included the evaluation of cytokines before and through 72 hours after exercise.Results. LPS stimulation of whole blood after MSM supplementation resulted in decreased induction of IL-1β, with no effect on IL-6, TNF-α, or IL-8. After exercise, there was a reduced response to LPS in the placebo, but MSM resulted in robust release of IL-6 and TNF-α. A small decrease in resting levels of proinflammatory cytokines was noted with MSM, while an acute postexercise increase in IL-10 was observed with MSM.Conclusion. Strenuous exercise causes a robust inflammatory reaction that precludes the cells from efficiently responding to additional stimuli. MSM appears to dampen the release of inflammatory molecules in response to exercise, resulting in a less incendiary environment, allowing cells to still have the capacity to mount an appropriate response to an additional stimulus after exercise.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5119-5119
Author(s):  
Annie Levesque ◽  
Ann-Louise Savard ◽  
Denis-Claude Roy ◽  
Francine Foss ◽  
Christian Scotto

Abstract Although the risk of graft versus host disease (GvHD) can be reduced by improved donor-recipient matching and by the depletion of T cells before transplantation, GvHD still develops in 30–70% of allogeneic hematopoietic stem cell transplantation (HSCT) patients. The chronic phase of the disease (cGvHD), for which the pathogenesis is similar to autoimmune diseases, involves profound immune dysregulation leading to both immunodeficiency and autoimmunity. Standard therapies for cGvHD such as corticosteroids and immunosuppressants are associated with high toxicity and have demonstrated limited efficacy in patients with extensive disease. Extracorporeal photopheresis (ECP) has been shown by others in the clinic as a non-aggressive and beneficial alternative treatment for cGvHD, inducing Th1/Th2 immunomodulation that restores immunological tolerance. Celmed has developed an alternative approach to eliminate immunoreactive T cells using the Theralux™ photodynamic cell therapy (PDT) system based on the use of the rhodamine-123 derivative TH9402 illuminated ex vivo with a visible light source (λ =514nm). It has been suggested that the apoptotic cells, when returned to the patient, may be able to modulate the immune system as seen with other ECP methods. We aimed to evaluate in vivo and in vitro the possibility of also using the Theralux™ system in the ECP setting. A preliminary mouse model suggested that splenic T cells pre-treated with the Theralux™ system were able to induce an improvement of overall survival (p<0.05) in mice with acute GvHD. Additionally, we developed a simplified PDT process and conducted a series of experiments with peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. These studies have shown that the intra- and inter-donor variability in TH9402 incorporation are very low (~5% and 10%, respectively). A dose-effect study has shown a relationship of the PDT conditions with the levels of cell death, allowing significant control of the level of apoptosis induced. Phenotypic analyses have shown that this process results in an increase of AnnexinV positive cells as well as a decrease in the absolute number of CD3+ cells, CD19+/CD20+ cells and CD14+ cells and an increase in CD11c+ cells. This would suggest that apoptosis could be induced in both autoreactive T and B cells which could potentially stimulate an immune response against them. Moreover, the increase in CD11c+ cells combined with the decrease in CD14+ cells could reflect the maturation of macrophages into dendritic cells that are very potent antigen presenting cells. The mechanism by which these specific PDT conditions induce cell death is still under investigation but preliminary studies have shown that the cell death in unselected resting PBMCs may be caspase-independent. Finally, the evaluation of the effect of PDT on samples from cGvHD patients also demonstrated the capacity of this treatment strategy to induce apoptosis in these cells. Based on these data, we intend to begin a pilot clinical study evaluating two controlled PDT conditions inducing different levels of apoptosis in order to assess the safety and biological effect of the Theralux™ ECP system to treat patients with cGvHD.


2000 ◽  
Vol 74 (3) ◽  
pp. 1094-1100 ◽  
Author(s):  
Joshua T. Bartoe ◽  
Björn Albrecht ◽  
Nathaniel D. Collins ◽  
Michael D. Robek ◽  
Lee Ratner ◽  
...  

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and is associated with a variety of immune-mediated disorders. The role of four open reading frames (ORFs), located between env and the 3′ long terminal repeat of HTLV-1, in mediating disease is not entirely clear. By differential splicing, ORF II encodes two proteins, p13II and p30II, both of which have not been functionally defined. p13II localizes to mitochondria and may alter the configuration of the tubular network of this cellular organelle. p30II localizes to the nucleolus and shares homology with the transcription factors Oct-1 and -2, Pit-1, and POU-M1. Both p13II and p30II are dispensable for infection and immortalization of primary human and rabbit lymphocytes in vitro. To test the role of ORF II gene products in vivo, we inoculated rabbits with lethally irradiated cell lines expressing the wild-type molecular clone of HTLV-1 (ACH.1) or a clone containing selected mutations in ORF II (ACH.30/13.1). ACH.1-inoculated animals maintained higher HTLV-1-specific antibody titers than animals inoculated with ACH.30/13.1. Viral p19 antigen was transiently detected in ex vivo cultures of peripheral blood mononuclear cells (PBMC) from only two ACH.30/13.1-inoculated rabbits, while PBMC cultures from all ACH.1-inoculated rabbits routinely produced p19 antigen. In only three of six animals exposed to the ACH.p30II/p13IIclone could provirus be consistently PCR amplified from extracted PBMC DNA and quantitative competitive PCR showed the proviral loads in PBMC from ACH.p30II/p13II-infected rabbits to be dramatically lower than the proviral loads in rabbits exposed to ACH. Our data indicate selected mutations in pX ORF II diminish the ability of HTLV-1 to maintain high viral loads in vivo and suggest an important function for p13II and p30II in viral pathogenesis.


Pathogens ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 40 ◽  
Author(s):  
Florian S. Hohnstein ◽  
Marita Meurer ◽  
Nicole de Buhr ◽  
Maren von Köckritz-Blickwede ◽  
Christoph G. Baums ◽  
...  

Weaning piglets are susceptible to the invasive Streptococcus (S.) suis infection, which can result in septicemia. The aim of this study was to investigate the cytokine profile induced upon S. suis infection of blood, to determine the cellular sources of those cytokines, and to study the potential effects of the induced cytokines on bacterial killing. We measured TNF-α, IL-6, IFN-γ, IL-17A and IL-10 after an experimental intravenous infection with S. suis serotype 2 in vivo, and analyzed whole blood, peripheral blood mononuclear cells (PBMC) and separated leukocytes to identify the cytokine-producing cell type(s). In addition, we used a reconstituted whole blood assay to investigate the effect of TNF-α on bacterial killing in the presence of different S. suis-specific IgG levels. An increase in IL-6 and IL-10, but not in IFN-γ or IL-17A, was observed in two of three piglets with pronounced bacteremia 16 to 20 h after infection, but not in piglets with controlled bacteremia. Our results confirmed previous findings that S. suis induces TNF-α and IL-6 and could demonstrate that TNF-α is produced by monocytes in vitro. We further found that IL-10 induction resulted in reduced secretion of TNF-α and IL-6. Rapid induction of TNF-α was, however, not crucial for in vitro bacterial killing, not even in the absence of specific IgG.


2003 ◽  
Vol 71 (4) ◽  
pp. 1995-2001 ◽  
Author(s):  
Helena Scaife ◽  
Zerai Woldehiwet ◽  
C. Anthony Hart ◽  
Steven W. Edwards

ABSTRACT Ovine neutrophils spontaneously underwent apoptosis during culture in vitro, as assessed by morphological changes and exposure of annexin V binding sites on their cell surfaces. The addition of conditioned medium from concanavalin A-treated ovine peripheral blood mononuclear cells (PBMC) could partially protect against this progression into apoptosis, but dexamethasone and sodium butyrate could not. Actinomycin D accelerated the rate at which ovine neutrophils underwent apoptosis. Neutrophils isolated from sheep experimentally infected with Anaplasma phagocytophilum showed significantly delayed apoptosis during culture ex vivo, and the addition of conditioned medium from PBMC to these cells could not delay apoptosis above the protective effects observed after in vivo infection. The ability of neutrophils from A. phagocytophilum-infected sheep to activate a respiratory burst was increased compared to the activity measured in neutrophils from uninfected sheep, but chemotaxis was decreased in neutrophils from infected sheep. These data are the first demonstration that in vivo infection with A. phagocytophilum results in changes in rates of apoptosis of infected immune cells. This may help explain how these bacteria replicate in these normally short-lived cells.


2020 ◽  
Author(s):  
Hacer Kuzu Okur ◽  
Koray Yalcin ◽  
Cihan Tastan ◽  
Sevda Demir ◽  
Bulut Yurtsever ◽  
...  

UNSTRUCTURED Dornase alfa, the recombinant form of the human DNase I enzyme, breaks down neutrophil extracellular traps (NET) that include a vast amount of DNA fragments, histones, microbicidal proteins and oxidant enzymes released from necrotic neutrophils in the highly viscous mucus of cystic fibrosis patients. Dornase alfa has been used for decades in patients with cystic fibrosis to reduce the viscoelasticity of respiratory tract secretions, to decrease the severity of respiratory tract infections, and to improve lung function. Previous studies have linked abnormal NET formations to lung diseases, especially to acute respiratory distress syndrome (ARDS). Coronavirus disease 2019 (COVID-19) pandemic affected more than two million people over the world, resulting in unprecedented health, social and economic crises. The COVID-19, viral pneumonia that progresses to ARDS and even multiple organ failure, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High blood neutrophil levels are an early indicator of SARS-CoV-2 infection and predict severe respiratory diseases. A similar mucus structure is detected in COVID-19 patients due to the accumulation of excessive NET in the lungs. Here, we show our preliminary results with dornase alfa that may have an in-vitro anti-viral effect against SARS-CoV-2 infection in a bovine kidney cell line, MDBK without drug toxicity on healthy adult peripheral blood mononuclear cells. In this preliminary study, we also showed that dornase alfa can promote clearance of NET formation in both an in-vitro and three COVID-19 cases who showed clinical improvement in radiological analysis (2-of-3 cases), oxygen saturation (SpO2), respiratory rate, disappearing of dyspnea and coughing.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rachel Tanner ◽  
Andrew D. White ◽  
Charelle Boot ◽  
Claudia C. Sombroek ◽  
Matthew K. O’Shea ◽  
...  

AbstractWe present a non-human primate mycobacterial growth inhibition assay (MGIA) using in vitro blood or cell co-culture with the aim of refining and expediting early tuberculosis vaccine testing. We have taken steps to optimise the assay using cryopreserved peripheral blood mononuclear cells, transfer it to end-user institutes, and assess technical and biological validity. Increasing cell concentration or mycobacterial input and co-culturing in static 48-well plates compared with rotating tubes improved intra-assay repeatability and sensitivity. Standardisation and harmonisation efforts resulted in high consistency agreements, with repeatability and intermediate precision <10% coefficient of variation (CV) and inter-site reproducibility <20% CV; although some systematic differences were observed. As proof-of-concept, we demonstrated ability to detect a BCG vaccine-induced improvement in growth inhibition in macaque samples, and a correlation between MGIA outcome and measures of protection from in vivo disease development following challenge with either intradermal BCG or aerosol/endobronchial Mycobacterium tuberculosis (M.tb) at a group and individual animal level.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (&gt; or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


2019 ◽  
Vol 2 (1) ◽  
pp. 23-30
Author(s):  
Mark Collister ◽  
Julia Rempel ◽  
Jiaqi Yang ◽  
Kelly Kaita ◽  
Zach Raizman ◽  
...  

Background: Interleukin 32 (IL-32) is a recently described pro-inflammatory cytokine implicated in chronic hepatitis C virus (HCV)-related inflammation and fibrosis. IL-32α is the most abundant IL-32 isoform. Methods: Circulating IL-32α levels were documented in patients with chronic HCV infections ( n = 31) and compared with individuals who spontaneously resolved HCV infection ( n = 14) and HCV-naive controls ( n = 20). In addition, peripheral blood mononuclear cells (PBMC) from the chronic HCV ( n = 12) and HCV-naive ( n = 9) cohorts were investigated for responses to HCV core and non-structural (NS)3 protein induced IL-32α production. Finally, correlations between IL-32α levels, hepatic fibrosis and subsequent responses to interferon-based therapy were documented in patients with chronic HCV. Results: Circulating IL-32α levels in patients with chronic HCV were similar to those of spontaneously resolved and HCV-naive controls. HCV protein induced IL-32α responses were similar in chronic HCV patients and HCV-naive controls. In patients with chronic HCV, serum IL-32α levels correlated with worsening METAVIR fibrosis (F) scores from F0 to F3 ( r = 0.596, P < 0.001) as did NS3 induced IL-32α responses ( r = 0.837, P < 0.05). However, these correlations were not sustained with the inclusion of IL-32α levels at F4 scores, suggesting events at F4 interfere with IL-32α synthesis or release. In chronic HCV patients who underwent treatment ( n = 28), baseline in vivo and in vitro induced IL-32α concentrations were not predictive of therapeutic outcomes. Conclusions: IL-32α activity is associated with worsening fibrosis scores in non-cirrhotic, chronic HCV patients.


Sign in / Sign up

Export Citation Format

Share Document