scholarly journals Diversity of 4-Chloro-2-nitrophenol-Degrading Bacteria in a Waste Water Sample

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Pankaj Kumar Arora ◽  
Alok Srivastava ◽  
Vijay Pal Singh

Eighteen bacterial strains, isolated from a waste water sample collected from a chemically contaminated site, Patancheru (17°32′N 78°16′E/17.53°N 78.27°E), India, were able to decolorize 4-chloro-2-nitrophenol (4C2NP) in the presence of an additional carbon source. These eighteen 4C2NP-decolorizing strains have been identified as members of four different genera, includingBacillus,Paenibacillus,Pseudomonas, andLeuconostocbased on the 16S rRNA gene sequencing and phylogenetic analysis. Most of the bacteria (10) belonged to the genusBacillusand contributed 56% of the total 4C2NP-degrading bacteria, whereas the members of generaPaenibacillusandPseudomonasrepresented 22% and 17%, respectively, of total 4C2NP-degrading isolates. There was only one species ofLeuconostoccapable of degrading 4C2NP. This is the first report of the diversity of 4C2NP-decolorizing bacteria in a waste water sample. Furthermore, one bacterium,Bacillus aryabhattaistrain PC-7, was able to decolorize 4C2NP up to a concentration of 2.0 mM. Gas chromatography-mass spectrometry analysis identified 5-chloro-2-methylbenzoxazole as the final product of 4C2NP decolorization in strain PC-7.

2004 ◽  
Vol 70 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Jonathan D. Van Hamme ◽  
Phillip M. Fedorak ◽  
Julia M. Foght ◽  
Murray R. Gray ◽  
Heather D. Dettman

ABSTRACT The vacuum residue fraction of heavy crudes contributes to the viscosity of these oils. Specific microbial cleavage of C—S bonds in alkylsulfide bridges that form linkages in this fraction may result in dramatic viscosity reduction. To date, no bacterial strains have been shown conclusively to cleave C—S bonds within alkyl chains. Screening for microbes that can perform this activity was greatly facilitated by the use of a newly synthesized compound, bis-(3-pentafluorophenylpropyl)-sulfide (PFPS), as a novel sulfur source. The terminal pentafluorinated aromatic rings of PFPS preclude growth of aromatic ring-degrading bacteria but allow for selective enrichment of strains capable of cleaving C—S bonds. A unique bacterial strain, Rhodococcus sp. strain JVH1, that used PFPS as a sole sulfur source was isolated from an oil-contaminated environment. Gas chromatography-mass spectrometry analysis revealed that JVH1 oxidized PFPS to a sulfoxide and then a sulfone prior to cleaving the C—S bond to form an alcohol and, presumably, a sulfinate from which sulfur could be extracted for growth. Four known dibenzothiophene-desulfurizing strains, including Rhodococcus sp. strain IGTS8, were all unable to cleave the C—S bond in PFPS but could oxidize PFPS to the sulfone via the sulfoxide. Conversely, JVH1 was unable to oxidize dibenzothiophene but was able to use a variety of alkyl sulfides, in addition to PFPS, as sole sulfur sources. Overall, PFPS is an excellent tool for isolating bacteria capable of cleaving subterminal C—S bonds within alkyl chains. The type of desulfurization displayed by JVH1 differs significantly from previously described reaction results.


2015 ◽  
Vol 72 (2) ◽  
pp. 311-321 ◽  
Author(s):  
Vipul R. Patel ◽  
Nikhil Bhatt

The objective of this study was development and characterization of a halophilic bacterial consortium for rapid decolorization and degradation of a wide range of dyes and their mixtures. The 16S rRNA gene analysis of developed halophilic consortium VN.1 showed that the bacterial consortium contained six bacterial strains, which were identified as Pseudomonas fluorescens HM480360, Enterobacter aerogenes HM480361, Shewanella sp. HM589853, Arthrobacter nicotianae HM480363, Bacillus beijingensis HM480362 and Pseudomonas aeruginosa JQ659549. Halophilic consortium VN.1 was able to decolorize up to 2,500 mg/L RB220 with >85% chemical oxygen demand (COD) reduction under static condition at 30 °C and pH 8.0 in the presence of 7% NaCl. VN.1 also exhibited more than 85% COD reduction with >25 mg/(L h) rate of decolorization in the case of different reactive dye mixtures. We propose the symmetric cleavage of RB220 using Fourier transform infrared, high-performance liquid chromatography (HPLC), nuclear magnetic resonance and gas chromatography-mass spectrometry analysis, and confirmed the formation of sodium-4-aminobenzenesulfonate, sodium-6-aminonepthalenesulfonate, and sodiumbenzene/nepthalenesulfonate. Toxicity studies confirm that the biodegraded products of RB220 effluent stimulate the growth of plants as well as the bacterial community responsible for soil fertility.


2008 ◽  
Vol 75 (5) ◽  
pp. 1339-1344 ◽  
Author(s):  
Amy V. Callaghan ◽  
Meghan Tierney ◽  
Craig D. Phelps ◽  
L. Y. Young

ABSTRACT Nitrate-reducing enrichments, amended with n-hexadecane, were established with petroleum-contaminated sediment from Onondaga Lake. Cultures were serially diluted to yield a sediment-free consortium. Clone libraries and denaturing gradient gel electrophoresis analysis of 16S rRNA gene community PCR products indicated the presence of uncultured alpha- and betaproteobacteria similar to those detected in contaminated, denitrifying environments. Cultures were incubated with H34-hexadecane, fully deuterated hexadecane (d 34-hexadecane), or H34-hexadecane and NaH13CO3. Gas chromatography-mass spectrometry analysis of silylated metabolites resulted in the identification of [H29]pentadecanoic acid, [H25]tridecanoic acid, [1-13C]pentadecanoic acid, [3-13C]heptadecanoic acid, [3-13C]10-methylheptadecanoic acid, and d 27-pentadecanoic, d 25-, and d 2 4-tridecanoic acids. The identification of these metabolites suggests a carbon addition at the C-3 position of hexadecane, with subsequent β-oxidation and transformation reactions (chain elongation and C-10 methylation) that predominantly produce fatty acids with odd numbers of carbons. Mineralization of [1-14C]hexadecane was demonstrated based on the recovery of 14CO2 in active cultures.


2004 ◽  
Vol 67 (1) ◽  
pp. 199-202 ◽  
Author(s):  
MARI NEVAS ◽  
ANNA-RIITTA KORHONEN ◽  
MIIA LINDSTRÖM ◽  
PEKKA TURKKI ◽  
HANNU KORKEALA

The antibacterial properties of 13 essential oils, derived from spices grown in Finland, were examined with an agar diffusion method against 12 bacterial strains. The organisms tested included both spoilage and pathogenic bacteria. The gram-positive bacteria appeared to be more sensitive than the gram-negative organisms, Clostridium botulinum and Clostridium perfringens being the most sensitive. Oregano, savory, and thyme showed the broadest antibacterial activity by distinctly inhibiting the growth of all the organisms tested. By gas chromatography–mass spectrometry analysis, differences were noted in the composition of oregano and thyme oils in comparison to previous reports.


2022 ◽  
Vol 34 (2) ◽  
pp. 402-408
Author(s):  
B.V. Narasimha Raju Katari ◽  
Vemula Madhu ◽  
Annapurna Nowduri ◽  
Muralidharan Kaliyaperumal ◽  
Chidananda Swamy Rumalla

Bisphenols are important endocrine disruptors, which were widely used in the variety of food packing and storage materials which often come into contact with various food products packed in them. The presence of bisphenols in water is harmful for the health of humans as well as aquatic animals and also, they accumulate over a period of time. Hence, the present work aimed to develop a simple and accurate GCMS-SIM method for the quantification of bisphenols in packaged drinking water as well as the water samples collected in river and lakes in Andhra Pradesh state of India. Bisphenols were extracted by simple solvent extraction with acetonitrile and silylated by N,O-bis (trimethylsilyl)trifluoro acetamide and analyzed by GC-MS. Various parameters that affect the recovery of the analytes were carefully optimized and the developed method was validated. The recoveries of the analytes were in the range of 80-120 % with quantification limit of 1 ng/L. The calibration curve was linear in the concentration range of 5 ng/L to 10 μg/L. The method was applied for the quantification of bisphenols in packaged drinking water at room temperature and at 50 ºC at various time intervals. The results proved that the water sample kept at room temperature doesn’t shows peaks corresponding to bisphenols. The water sample exposed to 50 ºC for 30 days bisphenols content 10, 12, 22 and 8 ng/L respectively for bisphenol G (BPG), bisphenol F (BPF), bisphenol E, (BPE) and bisphenol A (BPA) whereas the same sample at 180 days of exposer shows 60, 51, 61 and 22 ng/L respectively confirms that the leaching of plastic due to temperature increases the bisphenols level. Among the real time samples studied, the bisphenols level was observed to be very high in Kolleru Lake and it is having 17, 14, 8 and 12 ng/L of BPG, BPF, BPE and BPA, respectively confirms that due to high plastic pollution the bisphenols level was high in these samples. Hence, it can be concluded that the method can be suitable for the analysis of bisphenols in drinking water as well as in wastewater samples.


2003 ◽  
Vol 69 (6) ◽  
pp. 3469-3475 ◽  
Author(s):  
Lars Peters ◽  
Gabriele M. K�nig ◽  
Anthony D. Wright ◽  
R�diger Pukall ◽  
Erko Stackebrandt ◽  
...  

ABSTRACT The North Sea bryozoan Flustra foliacea was investigated to determine its secondary metabolite content. Gas chromatography-mass spectrometry analysis of a dichloromethane extract of the bryozoan enabled 11 compounds to be identified. Preparative high-performance liquid chromatography of the extract resulted in the isolation of 10 brominated alkaloids (compounds 1 to 10) and one diterpene (compound 11). All of these compounds were tested to determine their activities in agar diffusion assays against bacteria derived from marine and terrestrial environments. Compounds 1, 3 to 7, 10, and 11 exhibited significant activities against one or more marine bacterial strains originally isolated from F. foliacea but only weak activities against all of the terrestrial bacteria. By using the biosensors Pseudomonas putida(pKR-C12), P. putida(pAS-C8), and Escherichia coli(pSB403) the antagonistic effect on N-acyl-homoserine lactone-dependent quorum-sensing systems was investigated. Compounds 8 and 10 caused reductions in the signal intensities in these bioassays ranging from 50 to 20% at a concentration of 20 μg/ml.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


Sign in / Sign up

Export Citation Format

Share Document