scholarly journals Investigation of Coagulation Activity of Cactus Powder in Water Treatment

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hayelom Dargo Beyene ◽  
Tessema Derbe Hailegebrial ◽  
Worku Batu Dirersa

This paper is focused on the comparative study of cactus powder, Alum, and their combination of physiochemical analyses of water sample such as TDS, pH, conductivity, salinity, and turbidity using jar test. The result indicated that percentage removal of turbidity from turbid water sample increased from 23.9% to 54% and 28.46% to 58.2% as dose increased from 0.50 to 3.50 g for both cactus powder and Alum, respectively. Cactus powder also has a marginal effect on pH value (7.33 at 0.50 g, 7.49 at 1.50 g, 7.57 at 2.50 g, and 7.57 at 3.50 g) as compared to the usage of chemical coagulants (Alum). The salinity was increased from 0.4% to 0.69 % and 0.39% to 0.98% as the dose of cactus powder and Alum increased from 0.50 g to 3.50 g, respectively. The result revealed that cactus powder is more effective in pH upholding, TDS maintenance, and salinity removal than Alum, but their combination is the most effective in terms of turbidity removal, reduction of salinity, reduction of conductivity, and reduction of TDS and has a marginal effect on dissolved oxygen (DO) value. In conclusion, the combination of Alum and cactus powder is more effective for turbidity removal, salinity removal, and pH and conductivity upholding than either of them used individually.

2018 ◽  
Vol 15 (30) ◽  
pp. 489-497
Author(s):  
J. T. B. SILVA ◽  
K. C. ROCHA ◽  
R. M. F. CUBA

With the progress in the agriculture sector, improper domains of pesticides, herbicides, and insecticides have grown, which have been negatively affected the environment until the present day. Therefore, the present work has as objective to evaluate the efficiency of the natural coagulant Tanfloc in the clarification stage with respect the herbicide glyphosate removal and the turbidity parameter by using jar test with different pH conditions and coagulant concentration. As a result, was obtained that for the pH range of 5-5.5 the natural coagulant has shown more efficient, with a glyphosate percentage removal of approximately 98.0% using low concentrations and turbidity removal of 21.69%. On the other hand, for the pH range of 6.8 to 7.3, the coagulant has not shown profitable results, considering that, for some concentrations, it was not possible to detect the herbicide removal. In the concentrations that were detected removal, the average glyphosate percentage removal was approximately 89% and an average of 20.24% of turbidity removal. In summary, although the natural coagulant has not shown remarkably efficient in the neutral pH range, the product may be considered an alternative device in water treatment with the respect of the use of metallic coagulants, which produce sludge with chemistry characteristics that may negatively affect the environment.


2020 ◽  
Vol 840 ◽  
pp. 29-34
Author(s):  
Rudy Syah Putra ◽  
Mutiara Ayu ◽  
Resti Yunia Amri

In this study the performance of biocoagulant based on protein (Moringa oleifera, Vigna sinensi) and tannin (Colocasie esculenta) was compared with Poly Alumunium Chloride (PAC) as a chemical coagulant have been evaluated using a synthetic kaolinite-turbid water which referred to water sample. The effectiveness of biocoagulants dosage were evaluated by turbidity removal (%), total dissolved solid TDS and electrical conductivity (EC). The results showed that the turbidity removal of water sample achieved as much as 94.4% and 87.0% for Moringa oleifera and Vigna sinensi, but low turbidity removal occurred when using Colocasia esculenta as much as 26.4%. High results of turbidity removal showed when using PAC as coagulant at different dosages as a comparison. The decreasing of TDS and EC in the water sample did not much influenced by the coagulants except for Vigna sinensi.


2005 ◽  
pp. 81-90 ◽  
Author(s):  
Marina Sciban ◽  
Mile Klasnja ◽  
Jelena Stojimirovic

The ability of seeds of plants: Phaseolus vulgaris, Robinia pseudoacacia Ceratonia siliqua and Amorpha fruticosa, to act as natural coagulants was tested using synthetic turbid water. This water was prepared by adding kaolin into tap water, just before the test. Active components were extracted from ground seeds with distilled water. The coagulation ability of this extract was assessed by the use of standard jar test measurements in water with various initial turbidity. Investigation of these natural coagulants was confirmed their positive coagulation activity. Of all plants that have been examined, the seed extract from Ceratonia siliqua appeared to be one of the most effective coagulants for water treatment. A dose of 20 mg/l of this coagulant resulted in 100% coagulation activity for clarification of water with 17.5 NTU initial turbidity.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 83-88 ◽  
Author(s):  
K.S. Narasiah ◽  
A. Vogel ◽  
N.N. Kramadhati

Samples of turbid water prepared under laboratory controlled conditions were tested using natural coagulant-flocculant Moringa oleifera seeds from Burundi, Central Africa, and from Mahajanga, Madagascar. Coagulation-flocculation and sedimentation experiments were conducted using jar test equipment. For these tests, 5% Moringa oleifera solutions (w/w in water) were prepared using shelled and non-shelled seeds from the aforementioned countries. The results show that, in both cases, the shelled seeds provide much higher turbidity removal than the non-shelled ones. In addition, the volume of sludge produced was approximately 30% of that of conventional coagulants such as alum. Finally, it was concluded that seeds from Burundi were of superior quality than those of Madagascar. In fact, higher dosages of these seeds, of up to four times, were required in order to attain the same level of turbidity as the Burundi seeds.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Liping Zhang ◽  
Xiaofei Jiao ◽  
Shengnian Wu ◽  
Xuejing Song ◽  
Ruihan Yao

A large amount of collectors, inhibitors and modifiers such as oleic acid, water glass and sodium carbonate are added to the flotation processing of tungsten ore, resulting in the difficulty of the suspended solids (SS) with the residual water glass settling down in the flotation wastewater. The removal efficiency of the suspended solids is low with commonly used reagents like polyaluminium chloride (PAC) and polyacrylamide (PAM). This paper innovatively applied calcium chloride (CaCl2) to treat flotation wastewater and optimized the dosage of CaCl2, PAM and the pH value. The experimental results showed that when the dosage of 595 mg/L CaCl2 was combined with 21 mg/L PAM at pH 12, the turbidity removal ratio could reach 99.98%, and the residual turbidity of the supernatant was 0.23 NTU. The effluent could fully meet the requirements for reuse in industrial, urban miscellaneous and scenic environment water consumption (turbidity < 5 NTU). The quadratic equation model fitted with Design-Expert 8.0.6 software was constructed as Y = 91.52 + 8.68A + 1.11B − 1.02C − 1.7AB + 0.86AC + 0.06BC − 1.56A2 + 2.09B2 − 1.89C2, which had a good accuracy of the predicted responses versus the experimental data.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Nor Aida Yusoff

The study investigated the performance of chitosan and extracted pandan leaves towards treatment of textile wastewater by using flocculation process. Pandan leaves were extracted by using solvent extraction method. Flocculation process was conducted using a Jar test experiment. The effect of dosage, pH, and settling time on reduction of COD, turbidity and color of textile wastewater was studied. The results obtained found that chitosan was very effective for reduction of COD, turbidity, color and indicator for color. The best condition for COD and turbidity removal was achieved at 0.2 g dosage, pH 4 and 60 minutes of settling time. Under this condition, about 58 and 99% of COD and turbidity was removed, respectively. However, the results obtained using extracted pandan was opposite compared to the chitosan. Extracted pandan was not able to remove both COD and turbidity of the waste. 


1970 ◽  
Vol 4 (1) ◽  
Author(s):  
Suleyman A. Muyibi ◽  
Saad A. Abbas Megat Johari M. M. Noor Fakrul Razi Ahmadun

In this laboratory based study, varying quantities of oil, corresponding to 20 % w/w, 25 % w/w and 30 % w/w kernel weight extracted from Moringa oleifera seeds ( S1, S2, S3) respectively  were applied in the coagulation of model turbid water (kaolin suspension) and turbid river water samples from River Batang Kali and River Selangor in Malaysia to determine the percentage oil removed which gave the best coagulation efficiency. For model turbid water (kaolin suspension) coagulation of low turbidity of 35 NTU, medium turbidity of 100 NTU and high turbidity of 300 NTU, sample S2  gave the best turbidity removal corresponding to 91.7%, 95.5% and 99% respectively. Application of sample S2 to River Batang Kali with low initial turbidity of 32 NTU and high initial turbidity of 502 NTU gave a highest turbidity removal of 69% and 99% respectively. Application to River Selangor with medium initial turbidity- of 87 NTU and high initial turbidity of 466 NTU gave a highest residual turbidity' of 94% and 98.9%,  respectively.Key words: Moringa oleifera seed, selective oil extraction, coagulation, model turbid water (kaolin suspension), river water, turbidity removal.


2018 ◽  
Vol 13 (3) ◽  
pp. 642-653 ◽  
Author(s):  
Moharram Fouad ◽  
Shaban Hassan

Abstract The performance of a sludge blanket clarifier was evaluated and compared to conventional settlers under high levels of turbidity and algae in the field and experimentally. Field data of sludge blanket and conventional clarifier operation were observed simultaneously for the treatment of highly turbid water. In addition, a comparison was carried out on turbidity removal efficiency, algae removal, and sludge accumulation pattern. Finally, these systems were simulated in the laboratory and operated to treat turbid water with high levels of turbidity and algae up to 80 NTU and 109cells/l respectively. Field data confirmed that the sludge blanket clarifier equipped with upper sludge cones has a high removal efficiency of turbidity and algae, ease of use and has insignificant sludge accumulation compared to the conventional settler. Further, laboratory experiments have confirmed that sludge blanket clarifier is also very effective for the treatment of high algae concentrations up to 109cells/l, with a short retention time, compared to a conventional settler, which was not effective under these conditions.


2021 ◽  
Author(s):  
Yimin Sang ◽  
Taotao Lu ◽  
Xianchun Lu ◽  
Shuguang Wang ◽  
Xueting Shao ◽  
...  

Abstract The flocs formed during microsand-ballasted flocculation (MBF) have attracted much attention. However, few studies have reported on comprehensive process parameters of MBF and its mechanism is still not well understood. Jar test and pilot-scale continuous experiments were here conducted on two kinds of simulated wastewater, labeled S1 (21.6-25.9 NTU) and S2 (96-105 NTU). Results revealed the hydraulic retention time ratio in the coagulation cell, injection & maturation cell, lamella settler of pilot-scale MBF equipment was 1: 3: 7.3. The optimum poly aluminum chloride doses for Samples S1 and S2 were 0.875 g/L and 1.0 g/L. Besides, the optimum size of microsand was 49-106 µm and the optimum dose was 1.0 g/L. Under aforementioned conditions, the effluent turbidity of S1 was below 0.47 NTU, lower than the Chinese drinking water standard; that of S2 was below 1.7 NTU, meeting the Chinese recycled water standard. Turbidity removal ranged from 98.0% to 98.8% for S1 and 98.5% to 99.5% for S2 when microsand was added. Therefore, microsand addition enhances MBF performance, where microsand serves as an initial core particle. Some microsand core particles bond together to form a dense core structure of micro-flocs by the adsorption bridging of inorganic polymeric flocculant. Moreover, the size of the largest micro-flocs may be controllable as long as the effective energy dissipation ɛ0 is adjusted appropriately through specific stirring speeds. This work provides comprehensive pilot-scale process parameters for using MBF to effectively treat wastewater and offers a clearer explanation of the formation mechanism of microsand-ballasted flocs.


Author(s):  
Emeodilichi H. Mba ◽  
Chika B. Mba ◽  
Mohammed Alkali

Wastewater contribute to many damages to the ecosystem and biodiversity, it encompasses domestic, commercial, industrial and agricultural components and also faecal sludge, to prevent this sensitive damage, wastewater need to be well treated before being discharged to the environment or water bodies, otherwise it contributes to some disease outbreak like malaria and typhoid. Extreme poverty with inequality of income, housing system and poor urban planning combined with rapid increase in population mostly found in low/lower class settlement are among those factors contributing to these challenges and this study determines the health and environment impact of untreated wastewater. The comparative study was carried out in two study areas; highbrow areas that makes use of central wastewater treatment plant known as “WUPA” and low/lower income areas that practice open surface wastewater discharge, to determine how frequent both residents treats malaria/typhoid and soil pH value of the study areas also analyzed. In-house survey questionnaire for 300 respondents of children below 12 years was employed which show that average 65% of residents in highbrow areas treated both malaria/typhoid once in 6 months, while 64% in the low/lower class areas treated 4 times in 6 months and with an average pH value of 8.18 for highbrow areas and 7.51 for low/lower class areas. This study recommends that government should connect all areas to the treatment plant, implement proper urban planning, awareness and with enforcement.


Sign in / Sign up

Export Citation Format

Share Document