scholarly journals Sentiment Contagion Based on the Modified SOSa-SPSa Model

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Zhijie Song ◽  
Rui Shi ◽  
Jie Jia ◽  
Jian Wang

Sentiment contagion is similar to an infectious disease that spreads in a crowd. In this study, we extend the proposed SOSa-SPSa model (susceptible-optimistic-susceptible and susceptible-pessimistic-susceptible) by considering the interaction between optimists and pessimists. Simulation results show that our model is reasonable and can better explain the entire contagion process by considering three groups of people. The recovery speed of pessimists has an obvious regulative effect on the number of pessimists and the possibility of optimists coming in contact with pessimists to be infected as pessimism plays a greater role than that of reverting to susceptibility. The number of pessimists is positively related to the possibility that optimists come in contact with pessimists to become pessimistic but is negatively related to the possibility of the other way around. When the speed of spontaneous generation is slow, the number of pessimists sharply increases. However, the increase is not so apparent when the speed of spontaneous generation reaches a certain number.

Author(s):  
Supriya Raheja

Background: The extension of CPU schedulers with fuzzy has been ascertained better because of its unique capability of handling imprecise information. Though, other generalized forms of fuzzy can be used which can further extend the performance of the scheduler. Objectives: This paper introduces a novel approach to design an intuitionistic fuzzy inference system for CPU scheduler. Methods: The proposed inference system is implemented with a priority scheduler. The proposed scheduler has the ability to dynamically handle the impreciseness of both priority and estimated execution time. It also makes the system adaptive based on the continuous feedback. The proposed scheduler is also capable enough to schedule the tasks according to dynamically generated priority. To demonstrate the performance of proposed scheduler, a simulation environment has been implemented and the performance of proposed scheduler is compared with the other three baseline schedulers (conventional priority scheduler, fuzzy based priority scheduler and vague based priority scheduler). Results: Proposed scheduler is also compared with the shortest job first CPU scheduler as it is known to be an optimized solution for the schedulers. Conclusion: Simulation results prove the effectiveness and efficiency of intuitionistic fuzzy based priority scheduler. Moreover, it provides optimised results as its results are comparable to the results of shortest job first.


Author(s):  
Gregory Gutin ◽  
Tomohiro Hirano ◽  
Sung-Ha Hwang ◽  
Philip R. Neary ◽  
Alexis Akira Toda

AbstractHow does social distancing affect the reach of an epidemic in social networks? We present Monte Carlo simulation results of a susceptible–infected–removed with social distancing model. The key feature of the model is that individuals are limited in the number of acquaintances that they can interact with, thereby constraining disease transmission to an infectious subnetwork of the original social network. While increased social distancing typically reduces the spread of an infectious disease, the magnitude varies greatly depending on the topology of the network, indicating the need for policies that are network dependent. Our results also reveal the importance of coordinating policies at the ‘global’ level. In particular, the public health benefits from social distancing to a group (e.g. a country) may be completely undone if that group maintains connections with outside groups that are not following suit.


2007 ◽  
Vol 39 (9) ◽  
pp. 2248-2270 ◽  
Author(s):  
Wei-Bin Zhang

The author develops a multiregional growth model with endogenous amenity and capital accumulation for any number of regions. The simulation results demonstrate that the national dynamics have a unique equilibrium. Comparative statics analysis shows that, if environmental improvement occurs in the technologically advanced (less advanced) region, the national output rises (falls). As a region improves its technology, the other two regions' aggregated output levels fall—not only in relative, but also in absolute, terms. This implies that if any region has a high rate of technological change and the other regions remain technologically stationary, then economic activities will tend to be concentrated in the technologically advancing region. It is also shown that technological differences appear to play only a small role in accounting for spatial wage disparities and endowments.


2012 ◽  
Vol 501 ◽  
pp. 151-155
Author(s):  
Yong Liu ◽  
Ge Zhang ◽  
Hua Yan ◽  
Yu Mei Ding ◽  
Wei Min Yang

In this article, three kinds of belt named B, C and D type are invented, then their main performance are compared with the other two kinds of belt structures introduced in previous papers. Simulation results showed that B and D-type belts are better than the other three. Comparatively the latter needs less material, its molding process is easier, and the tire body is lighter than B type tire, so in general it can be considered that D-type belt is the best among the five kinds of belt structures.


Author(s):  
Meng-Shiun Tsai ◽  
Ying-Che Huang

In this paper, an integrated acceleration/deceleration with dynamics interpolation scheme is proposed to confine the maximum contour error at the junction of linear junction. The dynamic contour error equation is derived analytically and then it is utilized for the interpolation design. Based on the derived formulations which could predict the command and dynamic errors, the advanced interpolation design could adjust the connecting velocity of the two blocks to confine the overall contour errors under the given tolerance. Simulation results validate the proposed algorithm can achieve higher accurate trajectory as compared to the other interpolation algorithm proposed in the past.


2007 ◽  
Vol 558-559 ◽  
pp. 1201-1206 ◽  
Author(s):  
Mihaela Teodorescu ◽  
Patrice Lasne ◽  
Roland E. Logé

The present work concerns the simulation of metallurgical evolutions in 3D multi-pass forming processes. In this context, the analyzed problem is twofold. One point refers to the management of the microstructure evolution during each pass or each inter-pass period and the other point concerns the management of the multi-pass aspects (different grain categories, data structure). In this framework, a model is developed and deals with both aspects. The model considers the microstructure as a composite made of a given (discretized) number of phases which have their own specific properties. The grain size distribution and the recrystallized volume fraction distribution of the different phases evolve continuously during a pass or inter-pass period. With this approach it is possible to deal with the heterogeneity of the microstructure and its evolution in multi-pass conditions. Both dynamic and static recrystallization phenomena are taken into account, with typical Avrami-type equations. The present model is implemented in the Finite Element code FORGE2005®. 3D numerical simulation results for a multi-pass process are presented.


1903 ◽  
Vol 3 (9-10) ◽  
pp. 437-454
Author(s):  
M. I. Ladygin

The Sterlitamak Zemsky Hospital has 34 beds and in the year under review it had four rooms: an infectious disease room, one for women, and two for men, the smaller of which was intended for clean operated patients, while the other was for purulent and therapeutic patients (the rooms were painted with oil paint); women after the surgeries were transferred to the general ward. The two operating theatres were clean and pusy; they were adjacent, painted with oil paint; in the case of pus, the two operating theatres were carefully fumigated with formalin, followed by soap washout and Sulema 1 : 1000. The rooms and the operating theatre were ventilated in the windows.


1992 ◽  
Vol 5 (6) ◽  
pp. 312-316 ◽  
Author(s):  
Werner Kalow

A young science serves its purpose if it leads not only to new knowledge, but to new insights and concepts. This article opens with examples to illustrate some former thinking that the introduction of pharmacogenetic has overcome. Pharmacogenetic case histories from discovery to the present illustrate the interlocking of observations, technical advances, and changing concepts. There are striking biological similarities between pharmacogenetics and those inborn factors that cause resistance to infectious disease: Both represent person-to-person variations that may help the survival of populations, one when facing massive toxic exposures, the other when facing plagues and epidemics. Thus pharmacogenetics represents a biologically necessary variability of the defenses against chemical intruders, and this includes drugs. While this variability is desirable, drug toxicity occurring on the basis of this variability must be avoided. The most successful defendants against toxicity due to polymorphic (ie, high incidence) variants should be the designers of new drugs. The only defender concerned with rare variants can be the attentive clinician.


2020 ◽  
Vol 41 (3) ◽  
Author(s):  
Farhad Fouladi ◽  
Abbas Rezaei

In this paper, a six-channel microstrip diplexer is designed and fabricated. It operates at 0.75/0.85/1/1.25/1.6/1.8 GHz for multi-service wireless communication systems. It consists of two stub-loaded resonators, which are integrated by coupled lines. The channels are close together, which makes the proposed diplexer suitable for frequency division duplex (FDD) schemes. The proposed structure has a compact size of 0.025 λg2 where λg is the guided wavelength calculated at 0.75 GHz. The other advantages of the introduced multi-channel diplexer are the low insertion losses of 1.62/1.27/0.43/0.53/1.26 and 1 dB, as well as good return losses of 26/26/25/25/21.7 and 22 dB at 0.75/0.85/1/1.25/1.6/1.8 GHz respectively. A good isolation of less than 22 dB is obtained between the channels. In order to design the presented diplexer a designing technique is used which is based on the proposing of an equivalent approximated LC model and calculating the inductors and capacitors. To confirm the simulation results, the introduced diplexer is fabricated and measured.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Ramin Rajaei ◽  
Mahmoud Tabandeh ◽  
Mahdi Fazeli

In this paper, we propose two novel soft error tolerant latch circuits namely HRPU and HRUT. The proposed latches are both capable of fully tolerating single event upsets (SEUs). Also, they have the ability of enduring single event multiple upsets (SEMUs). Our simulation results show that, both of our HRPU and HRUT latches have higher robustness against SEMUs as compared with other recently proposed radiation hardened latches. We have also explored the effects of process and temperature variations on different design parameters such as delay and power consumption of our proposed latches and other leading SEU tolerant latches. Our simulation results also show that, compared with the reference (unprotected) latch, our HRPU latch has 57% and 34% improvements in propagation delay and power delay product (PDP) respectively. In addition, process and temperature variations have least effects on HRPU in comparison with the other latches. Allowing little more delay, we designed HRUT latch that can filter single event transients (SETs). HRUT has been designed to be immune against SEUs, SEMUs and SETs with an acceptable overhead and sensitivity to process and temperature variations.


Sign in / Sign up

Export Citation Format

Share Document