scholarly journals Angiotensin-(1-7) Downregulates Diabetes-Induced cGMP Phosphodiesterase Activation in Rat Corpus Cavernosum

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Gursev S. Dhaunsi ◽  
Mariam Yousif ◽  
Batoul Makki ◽  
Saghir Akhtar ◽  
Ibrahim F. Benter

Molecular mechanisms of the beneficial effects of angiotensin-(1-7), Ang-(1-7), in diabetes-related complications, including erectile dysfunction, remain unclear. We examined the effect of diabetes and/or Ang-(1-7) treatment on vascular reactivity and cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) in corpus cavernosum. Male Wistar rats were grouped as (1) control, (2) diabetic (streptozotocin, STZ, treated), (3) control + Ang-(1-7), and (4) diabetic + Ang-(1-7). Following 3 weeks of Ang-(1-7) treatment subsequent to induction of diabetes, rats were sacrificed. Penile cavernosal tissue was isolated to measure vascular reactivity, PDE gene expression and activity, and levels of p38MAP kinase, nitrites, and cGMP. Carbachol-induced vasorelaxant response after preincubation of corpus cavernosum with PE was significantly attenuated in diabetic rats, and Ang-(1-7) markedly corrected the diabetes-induced impairment. Gene expression and activity of PDE and p38MAP kinase were significantly increased in cavernosal tissue of diabetic rats, and Ang-(1-7) markedly attenuated STZ-induced effects. Ang-(1-7) significantly increased the levels of nitrite and cGMP in cavernosal tissue of control and diabetic rats. Cavernosal tissue of diabetic rats had significantly reduced cGMP levels and Ang-(1-7) markedly prevented the STZ-induced cGMP depletion. This study demonstrates that attenuation of diabetes-induced PDE activity might be one of the key mechanisms in the beneficial effects of Ang-(1-7).

Author(s):  
Ahmed mohmed Taha ◽  
Haredy Hassan Haredy ◽  
Ahmed Ghareip ◽  
Ahmed El sayed Nour El-deen ◽  
Yasser M Ashour

Diabetes Miletus (DM) is a global epidemic disease. It is estimated that there are already 415 million adults aged 20–79 years diabetics worldwide. Sildenafil citrate is a phosphodiesterase type 5 (PDE5) inhibitor, which increases cyclic guanosine monophosphate (cGMP) and metformin (MET) is a biguanide used for the treatment of type 2 diabetes which increases peripheral insulin sensitivity. Aim: This study aims to assess the effect of sildenafil citrate and metformin on lipid profile and glycemic control in diabetic and prediabetic albino rats. Materials and methods: Adult male albino rats are used and divided into nine groups each group consists of 10 rats, diabetes is induced by feeding a high-fat diet (HFD) for an initial period of 2 weeks followed by a single intraperitoneal injection of (35 mg/kg) Streptozotocin. Prediabetes is induced by feeding (HFD) and glucose in water for a period of 2 weeks. Sildenafil was given in a dose of (5 &10 mg/kg/day orally for 4 weeks), metformin was given in a dose of (50 &100 mg/kg/day orally for 4 weeks) using oral gavages to normal healthy rats, diabetic and prediabetic rats. Blood samples were collected after 4 weeks of treatment in all experimental groups. Results: Combined administration of sildenafil and metformin on diabetic rats improving hyperglycemia, oxidative stress, and hyperlipidemia induced by streptozotocin than the administration of metformin or sildenafil alone. Conclusion: Sildenafil has beneficial effects against some diabetic complications. The present study showed that sildenafil with metformin has beneficial effects against diabetic complications.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 498
Author(s):  
Mojdeh Khajehlandi ◽  
Lotfali Bolboli ◽  
Marefat Siahkuhian ◽  
Mohammad Rami ◽  
Mohammadreza Tabandeh ◽  
...  

Exercise can ameliorate cardiovascular dysfunctions in the diabetes condition, but its precise molecular mechanisms have not been entirely understood. The aim of the present study was to determine the impact of endurance training on expression of angiogenesis-related genes in cardiac tissue of diabetic rats. Thirty adults male Wistar rats were randomly divided into three groups (N = 10) including diabetic training (DT), sedentary diabetes (SD), and sedentary healthy (SH), in which diabetes was induced by a single dose of streptozotocin (50 mg/kg). Endurance training (ET) with moderate-intensity was performed on a motorized treadmill for six weeks. Training duration and treadmill speed were increased during five weeks, but they were kept constant at the final week, and slope was zero at all stages. Real-time polymerase chain reaction (RT-PCR) analysis was used to measure the expression of myocyte enhancer factor-2C (MEF2C), histone deacetylase-4 (HDAC4) and Calmodulin-dependent protein kinase II (CaMKII) in cardiac tissues of the rats. Our results demonstrated that six weeks of ET increased gene expression of MEF2C significantly (p < 0.05), and caused a significant reduction in HDAC4 and CaMKII gene expression in the DT rats compared to the SD rats (p < 0.05). We concluded that moderate-intensity ET could play a critical role in ameliorating cardiovascular dysfunction in a diabetes condition by regulating the expression of some angiogenesis-related genes in cardiac tissues.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 121
Author(s):  
Swami Prabhuling ◽  
Yasinalli Tamboli ◽  
Prafulla B. Choudhari ◽  
Manish S. Bhatia ◽  
Tapan Kumar Mohanta ◽  
...  

Nitric oxide (NO) is considered to be one of the most important intracellular messengers that play an active role as neurotransmitter in regulation of various cardiovascular physiological and pathological processes. Nitric oxide (NO) is a major factor in penile erectile function. NO exerts a relaxing action on corpus cavernosum and penile arteries by activating smooth muscle soluble guanylate cyclase and increasing the intracellular concentration of cyclic guanosine monophosphate (cGMP). Phophodiesterase (PDE) inhibitors have potential therapeutic applications. NO hybridization has been found to improve and extend the pharmacological properties of the parental compound. The present study describes the synthesis of novel furoxan coupled spiro-isoquinolino-piperidine derivatives and their smooth muscle relaxant activity. The study reveals that, particularly 10d (1.50 ± 0.6) and 10g (1.65 ± 0.7) are moderate PDE 5 inhibitors as compared to Sidenafil (1.43 ± 0.5). The observed effect was explained by molecular modelling studies on phosphodiesterase.


2018 ◽  
Vol 46 (01) ◽  
pp. 137-155 ◽  
Author(s):  
Ang Ying ◽  
Qing-Tao Yu ◽  
Li Guo ◽  
Wen-Song Zhang ◽  
Jin-Feng Liu ◽  
...  

Ginseng has been reported to have diverse pharmacological effects. One of the therapeutic claims for ginseng is to enhance sexual function. Ginsenosides are considered as the major active constituents. A steaming process can alter the ginsenoside profile of ginseng products. The structure–function relationship of ginsenosides in the treatment of erectile dysfunction (ED) has not been investigated yet. In this work, 15 different processed ginsengs are produced by steaming, and 13 major ginsensosides are quantified by liquid chromatography with UV detection, including Rg1, Re, Rf, Rb1, Rc, Rb2, Rf, Rk3, Rh4, 20S-Rg3, 20R-Rg3, Rk1, and Rg5. Their anti-ED activities are screened using hydrocortisone-induced mice model (Kidney Yang Deficiency Syndrome in Chinese Medicine) and primary corpus cavernosum smooth muscle cells (CCSMCs). A processed ginseng with steaming treatment at 120[Formula: see text]C for 4[Formula: see text]h and five times possesses abundant ginsenosides Rk1, Rk3, Rh4 and Rg5 transformed via deglycosylation and dehydroxylation, and produces optimal activity against ED. The number of sugar molecules, structure of hydroxyl groups and stereoselectivity in ginsenosides affect their anti-ED activity. Among the 13 ginsenosides, Rk1, Rk3, Rh4 and Rg5 are the most efficient in decreasing intracellular calcium levels by inhibiting phosphodiesterase 5A (PDE5A) to reduce the degradation of cyclic guanosine monophosphate (cGMP) in CCSMCs. Rg5 also restrain hypoxia inducible factor-1[Formula: see text] (HIF-1[Formula: see text] expression in hypoxia state, and increase endothelial nitric oxide synthase (eNOS) expression in isolated rat cavernous tissue. These observations suggest a role for steamed ginseng containing two pairs of geometric isomers (i.e., Rk1/Rg5 and Rk3/Rh4) in the treatment of ED.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Taylor Claybaugh ◽  
Sarah Decker ◽  
Kelly McCall ◽  
Yuriy Slyvka ◽  
Jerrod Steimle ◽  
...  

Rat studies demonstrated that type II diabetes mellitus (T2DM) decreases both the production and bioavailability of nitric oxide (NO). L-arginine (LA) provides the precursor for the production of NO. We hypothesized that LA dietary supplementation will preserve NO production via endothelial nitric oxide synthase (eNOS) causing renal microvascular vasodilation and increased glomerular blood flow and thus increasing glomerular filtration rate (GFR). This would impede the formation of reactive oxygen species which contributes to cell damage and death. LA supplementation preserved GFR in the treated diabetic rats compared to untreated diabetic rats. We provide evidence that this effect may be due to increased levels of eNOS and urinary cyclic guanosine monophosphate, which leads to renal microvascular vasodilation. Plasma nitrotyrosine was decreased in the LA treated rats; however, plasma nitrite levels remained unaffected as expected. Marked improvements in glucose tolerance were also observed in the LA treated diabetic rats. These results demonstrate that LA supplementation preserves NO activity and may delay the onset of insulin resistance and renal dysfunction during hyperglycemic stress. These results suggest the importance of the NO pathway in consequent renal dysfunction and in the development of insulin resistance in diabetic rats.


2021 ◽  
Vol 20 (6) ◽  
pp. 3035
Author(s):  
Zh. D. Kobalava ◽  
P. V. Lazarev

Heart failure is a severe disease with an unfavorable prognosis, which requires intensification of therapy and the search for novel approaches to treatment. In this review, the physiological significance of soluble guanylate cyclase-related signaling pathway, reasons for decrease in its activity in heart failure and possible consequences are discussed. Pharmacological methods of stimulating the production of cyclic guanosine monophosphate using drugs with different mechanisms of action are considered. Data from clinical studies regarding their effectiveness and safety are presented. A promising approach is stimulation of soluble guanylate cyclase, which showed beneficial effects in preclinical studies, as well as in the recently completed phase III VICTORIA study.


2021 ◽  
Author(s):  
Aleš Fajmut

Molecular mechanisms and targets of cyclic guanosine monophosphate (cGMP) accounting for vascular smooth muscles (VSM) contractility are reviewed. Mathematical models of five published mechanisms are presented, and four novel mechanisms are proposed. cGMP, which is primarily produced by the nitric oxide (NO) dependent soluble guanylate cyclase (sGC), activates cGMP-dependent protein kinase (PKG). The NO/cGMP/PKG signaling pathway targets are the mechanisms that regulate cytosolic calcium ([Ca2+]i) signaling and those implicated in the Ca2+-desensitization of the contractile apparatus. In addition to previous mathematical models of cGMP-mediated molecular mechanisms targeting [Ca2+]i regulation, such as large-conductance Ca2+-activated K+ channels (BKCa), Ca2+-dependent Cl− channels (ClCa), Na+/Ca2+ exchanger (NCX), Na+/K+/Cl− cotransport (NKCC), and Na+/K+-ATPase (NKA), other four novel mechanisms are proposed here based on the existing but perhaps overlooked experimental results. These are the effects of cGMP on the sarco−/endo- plasmic reticulum Ca2+-ATPase (SERCA), the plasma membrane Ca2+-ATPase (PMCA), the inositol 1,4,5-trisphosphate (IP3) receptor channels type 1 (IP3R1), and on the myosin light chain phosphatase (MLCP), which is implicated in the Ca2+-desensitization. Different modeling approaches are presented and discussed, and novel model descriptions are proposed.


Sign in / Sign up

Export Citation Format

Share Document