scholarly journals Effects of Injection Rate Profile on Combustion Process and Emissions in a Diesel Engine

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Fuqiang Bai ◽  
Zuowei Zhang ◽  
Yongchen Du ◽  
Fan Zhang ◽  
Zhijun Peng

When multi-injection is implemented in diesel engine via high pressure common rail injection system, changed interval between injection pulses can induce variation of injection rate profile for sequential injection pulse, though other control parameters are the same. Variations of injection rate shape which influence the air-fuel mixing and combustion process will be important for designing injection strategy. In this research, CFD numerical simulations using KIVA-3V were conducted for examining the effects of injection rate shape on diesel combustion and emissions. After the model was validated by experimental results, five different shapes (including rectangle, slope, triangle, trapezoid, and wedge) of injection rate profiles were investigated. Modeling results demonstrate that injection rate shape can have obvious influence on heat release process and heat release traces which cause different combustion process and emissions. It is observed that the baseline, rectangle (flat), shape of injection rate can have better balance between NOx and soot emissions than the other investigated shapes. As wedge shape brings about the lowest NOx emissions due to retarded heat release, it produces the highest soot emissions among the five shapes. Trapezoid shape has the lowest soot emissions, while its NOx is not the highest one. The highest NOx emissions were produced by triangle shape due to higher peak injection rate.

Author(s):  
Eduardo Barrientos ◽  
Ivan Bortel ◽  
Michal Takats ◽  
Jiri Vavra

Engine induced swirl improves mixing of fuel and air and at optimal values accelerates burn, improves the combustion stability and can decrease particulate matter (PM). However, swirl increases convective heat loss and cylinder charge loss and could increase nitrogen oxides (NOx) emissions. High intensity of swirl could impede flame development and increases emissions of total hydrocarbons (THC) and carbon monoxide (CO). Therefore, careful and smart selection of optimal swirl values is paramount in order to obtain beneficial impact on combustion and emissions performance. This study is conducted on a 0.5L single cylinder research engine with common rail (CR) diesel injection system, with parameters corresponding to modern engines of passenger cars. The engine has three separate ports in the cylinder head. The change of swirl ratio is defined by closing appropriate ports. There are three levels of swirl ratio under study — 1.7, 2.9 and 4.5, corresponding to low, medium and high swirl levels respectively. This study highlights the influence of intake induced swirl on combustion parameters and emissions. Assessed combustion parameters are, among others, heat release rate, cylinder pressure rise and indicated mean effective pressure. Assessed emissions are standard gaseous emissions and smoke, with emphasis on PM emissions. An engine speed of 1500 rpm was selected, which well represents common driving conditions of this engine size. Various common rail pressures are used at ambient inlet manifold pressure (without boost pressure) and at 1 bar boosted pressure mode. It is found that when the swirl level is increased, the faster heat release during the premixed combustion and during early diffusion-controlled combustion causes a quick increase in both in-cylinder pressure and temperature, thus promoting the formation of NOx. However, since swirl enhances mixing and potentially produces a leaning effect, PM formation is reduced in general. However, maximum peak temperature is lower for high swirl ratio and boosted modes due to the increase of heat transfer into cylinder walls. Furthermore, it is necessary to find optimal values of common rail pressures and swirl ratio. Too much mixing allows increase on PM, THC and CO emissions without decrease on NOx emissions in general. Common rail injection system provides enough energy to achieve good mixing during all the injection time in the cases of supercharged modes and high common rail pressure modes. Positive influence of swirl ratio is found at lower boost pressures, lower revolution levels and at lower engine loads. The results obtained here help providing a better understanding on the swirl effects on diesel engine combustion and exhaust emissions over a range of engine operating conditions, with the ultimate goal of finding optimal values of swirl operation.


2008 ◽  
Vol 132 (1) ◽  
pp. 17-24
Author(s):  
Kazimierz LEJDA ◽  
Paweł WOŚ

In the paper the rate of heat release analysis in direct injection diesel engine has been presented and discussed. The research has been carried out for two different injection strategies, i.e. for conventional single-phase injection and for triple-phase injection executed by a Common Rail injection system. The calculation methodology of heat release rate based on indicator diagram has been presented as well.


Author(s):  
G. Chiatti ◽  
O. Chiavola ◽  
E. Recco

This work constitutes one of the last steps of a comprehensive research program in which vibration sensors are used with the purpose of developing and setting up a methodology that is able to perform a real time control of the combustion process by means of non-intrusive measurements. Previous obtained and published results have demonstrated that a direct relationship exists between in-cylinder pressure and engine block vibration signals. The analysis of the processed data have highlighted that the block vibration signal may be used to locate, in the crank–angle domain, the combustion phases (the start of the combustion, the crank angle value corresponding to the beginning of main combustion and to the in-cylinder pressure maximum value) and to quantify the in-cylinder pressure development by evaluating the pressure peak value and the pressure rise rate caused by the combustion process. The aim of this work is to extend and validate the developed methodology when a multiple-injection strategy is imposed on the engine. The paper presents the results obtained during the experimentation of a two cylinder diesel engine equipped with a common rail injection system, that was performed in the Laboratory of the Mechanical and Industrial Department of ‘ROMA TRE’ University. During the tests, a wide variation of the injection parameters settings is imposed on the engine (timing and duration) in its complete operative field.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 104
Author(s):  
Weigang Yu ◽  
Zhiqing Zhang ◽  
Bo Liu

In order to improve the efficiency of the diesel engine and reduce emissions, an improved heat transfer model was developed in an AVL-BOOST environment which is a powerful and user-friendly software for engine steady-state and transient performance analysis. The improved heat transfer model considers the advantages of the Woschni1978 heat transfer model and Honhenberg heat transfer model. In addition, a five-component biodiesel skeletal mechanism containing 475 reactions and 134 species was developed to simulate the fuel spray process and combustion process since it contained methyl linolenate, methyl linoleate, methyl oleate, methyl stearate, and methyl palmitate, which are a majority component in most biodiesel. Finally, the propulsion and load characteristics of a diesel engine fueled with biodiesel fuel were investigated by the improved heat transfer model in term of power, brake specific fuel consumption (BSFC), soot and NOx emissions. Similarly, the effects of the fuel injection rate on the diesel engine’s characteristic fueled with biodiesel was studied. The result showed that the errors between experiment and simulation were less than 2%. Thus, the simulation model could predict the propulsion and load characteristics of the diesel engine. The nozzle diameter, injection pressure, and injection advance angle are significant to the injection system. Thus, it is very important to choose the injection rate reasonably.


Author(s):  
Daniela Siano ◽  
Michela Costa ◽  
Fabio Bozza

Some aspects concerning the development of a prototype of a diesel engine suitable for aeronautical applications are discussed. The engine aimed at achieving a weight to power ratio equal to one kg/kW (220 kg for 220 kW) is conceived in a two stroke Uniflow configuration and constituted by six cylinders distributed on two parallel banks. Basing on a first choice of some geometrical and operational data, a preliminary fluid-dynamic and acoustic analysis is carried out at the sea level. This includes the engine-turbocharger matching, the estimation of the scavenging process efficiency, and the simulation of the spray and combustion process, arising from a Common Rail injection system. Both 1D and 3D CFD models are employed. In-cylinder pressure cycles are utilized to numerically predict the combustion noise. The acoustic study is based on the integration of FEM/BEM codes. In order to improve the engine performance and vibro-acoustic behaviour, the 1D model, tuned with information derived from the 3D code, is linked to an external optimiziation code (ModeFRONTIER™). A constrained multi-objective optimization is performed to contemporary minimize the fuel consumption and the maximum in-cylinder temperature and pressure gradient. In this way a better selection of a number of engine parameters is carried out (exhaust valve opening, closing and lift, intake ports heights, start of injection, etc). The best found solution is finally compared to the initial one and some substantial design improvements are discussed.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2941
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik ◽  
Karol Grab-Rogaliński

The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2729
Author(s):  
Ireneusz Pielecha ◽  
Sławomir Wierzbicki ◽  
Maciej Sidorowicz ◽  
Dariusz Pietras

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.


Sign in / Sign up

Export Citation Format

Share Document